A260667 a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*S(k,n)^2, where S(k,x) denotes the polynomial Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).
1, 37, 1737, 102501, 6979833, 523680739, 42129659113, 3572184623653, 315561396741609, 28807571694394593, 2701627814373536601, 259121323945378645947, 25330657454041707496017, 2516984276442279642274311, 253667099464270541534450025, 25884030861250181046253181349, 2670255662315910532447096232073
Offset: 1
Keywords
Examples
a(2) = 37 since (1/2^2) * Sum_{k=0..1} (2k+1)*S(k,2)^2 = (S(0,2)^2 + 3*S(1,2)^2)/4 = (1^2 + 3*7^2)/4 = 148/4 = 37. G.f. = x + 37*x^2 + 1737*x^3 + 102501*x^4 + 6979833*x^5 + 523680739*x^6 + ...
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- K. Kimoto and M. Wakayama, Apéry-like numbers arising from special values of spectral zeta function for non-commutative harmonic oscillators, Kyushu J. Math. 60(2006), no.2, 383-404. (Cf. the formula (6.19).)
- L. Long, R. Osburn and H. Swisher, On a conjecture of Kimoto and Wakayama, arXiv:1404.4723 [math.NT], 2014.
- Z.-W. Sun, Supercongruences involving products of two binomial coefficients, arXiv:1011.6676 [math.NT], 2010-2013; Finite Fields Appl. 22(2013), 24-44.
- Z.-W. Sun, Congruences involving g_n(x)=sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k, Ramanujan J., in press. Doi: 10.1007/s11139-015-9727-3.
- Z.-W. Sun, Supercongruences involving dual sequences, arXiv:1502.00712 [math.NT], 2015.
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Maple
# Implementing Mark van Hoeij's formula. c := n -> binomial(2*n, n)/(n + 1): h := n -> simplify(hypergeom([-n,-n,-n], [1,-2*n], 1)): b := n -> c(n)^2*((n+11)*(2+4*n)^2*h(n+1)^2-2*(n+1)*(11*n+16)*(1+2*n)*h(n)*h(n+1)-h(n)^2*(n+1)^3)/(25*(n+2)): a := n -> b(n-1): seq(a(n), n = 1..17); # Peter Luschny, Nov 11 2022
-
Mathematica
S[k_,x_]:=S[k,x]=Sum[Binomial[k,j]Binomial[x,j]Binomial[x+j,j],{j,0,k}] a[n_]:=a[n]=Sum[(2k+1)*S[k,n]^2,{k,0,n-1}]/n^2 Do[Print[n," ",a[n]],{n,1,17}]
Formula
a(n) ~ phi^(10*n + 3) / (10 * Pi^2 * n^3), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 06 2021
Conjecture: a(p-1) == 1 (mod p^3) for all primes p >= 5. - Peter Bala, Aug 15 2022
a(n) = ((n+10)*A005258(n)^2 - (11*n+5)*A005258(n)*A005258(n-1) - n*A005258(n-1)^2)/(25*(n+1)). - Mark van Hoeij, Nov 11 2022
Comments