A260685 Sequence is defined by the condition that Sum_{d|n} a(d)^(n/d) = 1 if n=1, = 0 if n>1.
1, -1, -1, -2, -1, -1, -1, -6, 0, -1, -1, 4, -1, -1, 1, -54, -1, 0, -1, 28, 1, -1, -1, 132, 0, -1, 0, 124, -1, -1, -1, -4470, 1, -1, 1, 444, -1, -1, 1, 5964, -1, -1, -1, 2044, 0, -1, -1, 89028, 0, 0, 1, 8188, -1, 0, 1, 248172, 1, -1, -1, 9784, -1, -1, 0, -30229110
Offset: 1
Keywords
Examples
For a prime p, a(p)^1 + a(1)^p = 0 => a(p) = -1. For n=6, a(1)^6 + a(2)^3 + a(3)^2 + a(6)^1 = 0, so 1 - 1 + 1 + a(6) = 0, so 1 + a(6) = 0, so a(6) = -1.
Links
- Robert Israel, Table of n, a(n) for n = 1..8447
Programs
-
Maple
a:= proc(n) option remember; -add(procname(n/d)^d, d = numtheory:-divisors(n) minus {1}); end proc: a(1):= 1: map(a, [$1..100]); # Robert Israel, Nov 19 2015
-
Mathematica
a[1] = 1; a[n_] := a[n] = -DivisorSum[n, If[# == 1, 0, a[n/#]^#] &]; Array[a, 70] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
-
PARI
a(n) = if (n==1, 1, - sumdiv(n, d, if (d==1, 0, a(n/d)^d))); \\ Michel Marcus, Nov 16 2015
Comments