cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260697 Number of binary words w of length n with equal numbers of 010 and 101 subwords such that for every prefix of w the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.

Original entry on oeis.org

1, 2, 4, 6, 11, 18, 32, 54, 95, 164, 291, 514, 923, 1656, 3000, 5442, 9942, 18216, 33564, 62040, 115167, 214404, 400497, 750070, 1408734, 2652088, 5004833, 9464616, 17935137, 34049044, 64754844, 123351410, 235335966, 449632300, 860241606, 1647932000
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2015

Keywords

Examples

			a(3) = 6: 000, 001, 011, 100, 110, 111.
a(4) = 11: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1010, 1100, 1110, 1111.
a(5) = 18: 00000, 00001, 00011, 00110, 00111, 01100, 01110, 01111, 10000, 10001, 10011, 10100, 11000, 11001, 11010, 11100, 11110, 11111.
a(10) = 291: 0000000000, 0000000001, 0000000011, ..., 0110101010, 1010101000, 1010101001, 1010101010, 1101010100, 1110101010, ..., 1111111100, 1111111110, 1111111111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, c) option remember;
         `if`(c<0, 0, `if`(n=0, `if`(c=0, 1, 0),
          b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+
          b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0))))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember;
         `if`(n<7, [1, 2, 4, 6, 11, 18, 32][n+1],
         ((n+3)*(307*n^2-2357*n+196)              *a(n-1)
          -(19280-3372*n-5181*n^2+719*n^3)        *a(n-2)
          +(2*(6582+268*n^3-2857*n^2+6959*n))     *a(n-3)
          +(2*(-3307*n^2+1151*n+384*n^3+9052))    *a(n-4)
          -(2*(1016*n^3-12133*n^2+38927*n-28304)) *a(n-5)
          +(4*(27387*n+431*n^3-38420-6108*n^2))   *a(n-6)
          -(4*(n-7))*(67*n-236)*(2*n-11)          *a(n-7)
          )/((2*(n+4))*(24*n^2-148*n-279)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, t_, c_] := b[n, t, c] =
         If[c < 0, 0, If[n == 0, If[c == 0, 1, 0],
         b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] +
         b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]];
    a[n_] := b[n, 1, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)