cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260704 Number of pairs of distinct divisors of A260703(n) having the property that the reversal of one is equal to the other.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2015

Keywords

Comments

A260703: numbers having at least two divisors such that the reversal of one is equal to the other.

Examples

			a(9)=3 because A260703(9) = 336 and the set of the divisors of 336, {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336} contains 3 pairs (12, 21), (24, 42) and (48, 84) with the property: 21 = reversal(12), 42 = reversal(24) and 84 = reversal(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=5000:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):d0:=nops(d):
      for i from 1 to d0 do:
       dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
       s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
        for k from i+1 to d0 do:
         if s=d[k]
         then
         it:=it+1:
         else fi:
        od:
        od:
        if it>0
        then
        printf(`%d, `,it):
        else fi:
    od:
  • Mathematica
    f[n_] := Block[{d = Select[Divisors@n, IntegerLength@# > 1 &], palQ, r}, palQ[x_] := Reverse@ # == # &@ IntegerDigits@ x; r = FromDigits@ Reverse@ IntegerDigits@ # & /@ d; Length@ Select[Intersection[d, r], ! palQ@ # &]/2]; f /@ Range@ 3000 /. 0 -> Nothing (* Michael De Vlieger, Nov 17 2015 *)