A260704 Number of pairs of distinct divisors of A260703(n) having the property that the reversal of one is equal to the other.
1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3
Offset: 1
Examples
a(9)=3 because A260703(9) = 336 and the set of the divisors of 336, {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336} contains 3 pairs (12, 21), (24, 42) and (48, 84) with the property: 21 = reversal(12), 42 = reversal(24) and 84 = reversal(48).
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):nn:=5000: for n from 1 to nn do: it:=0:d:=divisors(n):d0:=nops(d): for i from 1 to d0 do: dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd): s:=sum('y[j]*10^(n1-j)', 'j'=1..n1): for k from i+1 to d0 do: if s=d[k] then it:=it+1: else fi: od: od: if it>0 then printf(`%d, `,it): else fi: od:
-
Mathematica
f[n_] := Block[{d = Select[Divisors@n, IntegerLength@# > 1 &], palQ, r}, palQ[x_] := Reverse@ # == # &@ IntegerDigits@ x; r = FromDigits@ Reverse@ IntegerDigits@ # & /@ d; Length@ Select[Intersection[d, r], ! palQ@ # &]/2]; f /@ Range@ 3000 /. 0 -> Nothing (* Michael De Vlieger, Nov 17 2015 *)
Comments