cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260713 Number of iterations of A234742 needed when starting from A236844(n) before a fixed point is reached.

Original entry on oeis.org

6, 6, 5, 4, 6, 55, 141, 5, 4, 1, 6, 2, 145, 55, 6, 2, 141, 5, 2, 4, 4, 1, 4, 5, 6, 3, 4, 2, 4, 145, 55, 1, 3, 6, 3, 2, 14, 2, 141, 27, 5, 65, 1, 10, 2, 1, 4, 4, 4, 1, 4, 3, 1, 3, 9, 5, 1, 6, 5, 18, 3, 4, 2, 6, 4, 3, 145, 17, 55, 4, 1, 11, 36, 1, 3, 6, 5, 14, 3, 2, 14, 4, 1, 10, 2, 13, 141, 1, 6, 3, 27, 5, 9, 2, 65, 10, 1, 10, 2, 10, 2, 2, 3, 52, 86, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 04 2015

Keywords

Comments

It is not known whether the sequence is well-defined for all values. For example, does a(190) have a finite value? Cf. sequence A260735, starting iteration from 455 = A236844(190).

Crossrefs

Subsequence: A260716.

Programs

  • PARI
    allocatemem((2^29));
    v236844 = [5, 10, 15, 17, 20, 23, 29, 30, 34, 35, 40, 43, 45, 46, 51, 53, 58, 60, 65, 68, 69, 70, 71, 79, 80, 83, 85, 86, 89, 90, 92, 95, 101, 102, 105, 106, 107, 113, 116, 119, 120, 125, 127, 129, 130, 135, 136, 138, 139, 140, 142, 149, 151, 153, 155, 158, 159, 160, 161, 163, 166, 170, 172, 173, 178, 179, 180, 181, 184, 187, 190, 195, 197, 199, 202, 204, 205, 207, 210, 212, 214, 215, 221, 223, 226, 227, 232, 233, 235, 237, 238, 240, 245, 249, 250, 251, 254, 255, 257, 258, 260, 263, 265, 267, 269, 270, 271, 272, 276, 277, 278, 280, 281, 284, 289, 293, 295, 298, 302, 303, 305, 306, 307, 310, 311, 315, 316, 317, 318, 320, 321, 322, 323, 326, 331, 332, 335, 337, 339, 340, 344, 346, 347, 349, 353, 356, 358, 359, 360, 362, 365, 367, 368, 371, 373, 374, 377, 380, 381, 383, 387, 389, 390, 394, 398, 401, 404, 405, 408, 409, 410, 414, 417, 420, 421, 424, 428, 430, 431, 437, 439, 442, 443, 446, 447, 449, 452, 453, 454];
    A236844(n) = v236844[n];
    A234742(n) = factorback(subst(lift(factor(Mod(1, 2)*Pol(binary(n)))), x, 2)); \\ After M. F. Hasler's Feb 18 2014 code.
    A260712(n) = {my(prev=-1,i=-1); until((n==prev), prev = n; n = A234742(n); i++); return(i); };
    A260713(n) = A260712(A236844(n));
    for(n=1, 189, write("b260713.txt", n, " ", A260713(n)));
    
  • Scheme
    (define (A260713 n) (A260712 (A236844 n)))

Formula

a(n) = A260712(A236844(n)).