cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260730 Numbers n for which A065339(n) > A260728(n).

Original entry on oeis.org

21, 33, 42, 57, 66, 69, 77, 84, 93, 105, 114, 129, 132, 133, 138, 141, 154, 161, 165, 168, 177, 186, 189, 201, 209, 210, 213, 217, 228, 231, 237, 249, 253, 258, 264, 266, 273, 276, 282, 285, 297, 301, 308, 309, 321, 322, 329, 330, 336, 341, 345, 354, 357, 372, 378, 381, 385, 393, 399, 402, 413, 417, 418, 420, 426, 429, 434, 437, 441, 453, 456, 462, 465, 469, 473, 474, 483, 489, 497, 498, 501, 506, 513, 516, 517, 525, 528, 532, 537, 546, 552
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2015

Keywords

Comments

Numbers n such that when the exponents in the prime factorization of A097706(n) are added in base-2 they produce at least one carry-bit. In other words, in that set of exponents {e1, e2, ..., en} there is at least one pair e_i, e_j that their binary representations have at least one 1-bit in the same position. (Here i and j are distinct as e_i and e_j are exponents of different primes, although e_i could be equal to e_j. See the examples.)
This differs from A119973 for the first time at n=30 where a(30)=231, term which is not present in A119973. Note that n=231 is the first position where the difference A065339(n) - A260728(n) > 1 as 231 = 3*7*11, a product of three distinct 4k+3 primes, thus A065339(231) = 3, while A260728(231) = 1.

Examples

			21 = 3^1 * 7^1 is present, because in its prime factors of the form 4k+3 (which are 3 and 7) the exponents 1 and 1 have at least one 1-bit in the same position, thus producing a carry-bit when summed in base-2.
63 = 3^2 * 7^1 is NOT present, because in its prime factors of the form 4k+3 the exponents 2 and 1 ("10" and "1" in binary) do NOT produce a carry-bit when summed in base-2, as those binary representations do not have any 1's in a common position.
189 = 3^3 * 7^1 is present, because in its prime factors of the form 4k+3 the exponents 3 and 1 ("11" and "1" in binary) have at least one 1-bit in the same position, thus producing a carry-bit when summed in base-2.
		

Crossrefs