cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260736 a(0) = 0; for n >= 1, a(n) = A000035(n) + a(A257684(n)); in the factorial representation of n the number of digits with maximal possible value allowed in its location.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 27 2015

Keywords

Comments

In the factorial representation of n, given as {d_k, ..., d_3, d_2, d_1}, the maximal allowed digit for any position j is j. This sequence gives the number of digits in the whole representation [A007623(n)] that attain that maximum allowed value.

Examples

			For n=19, which has factorial representation "301", the digits at position 1 and 3, namely "1" and "3" are equal to their one-based position index, in other words, the maximal digits allowed in those positions (while "0" at position 2 is not), thus a(19) = 2.
		

Crossrefs

Cf. also A257511.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, c = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r == m - 1, c++]; m++]; c]; Array[a, 100, 0] (* Amiram Eldar, Jan 23 2024 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum(int(y[i])*f(i + 1) for i in range(len(y))) def a(n): return 0 if n==0 else n%2 + a(a257684(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017

Formula

a(0) = 0; for n >= 1, a(n) = A000035(n) + a(A257684(n)).
Other identities. For all n >= 1:
a(n!-1) = n-1. [n!-1 also gives the first position where n-1 occurs.]