cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260771 Certain directed lattice paths.

Original entry on oeis.org

1, 2, 7, 30, 142, 716, 3771, 20502, 114194, 648276, 3737270, 21819980, 128757020, 766680856, 4600866643, 27797553638, 168949310378, 1032267189636, 6336728149794, 39062959379620, 241720286906116, 1500910751651752, 9348824475860702, 58398701313158780
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-l+1)*Binomial[n+1, l] * Sum[Binomial[i-1, i-l] * Sum[Binomial[j, n+l-j-i] * 2^(-n+l+2*j+i) * 3^(n-l-j+1) * Binomial[n-l+1, j], {j, 0, n-l+1}], {i, l, n+l}], {l, 0, n+1}]/(n+1), {n, 0, 20}] (* Vaclav Kotesovec, Feb 28 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((-1)^(n-l+1)*binomial(n+1,l)*sum(binomial(i-1,i-l)*sum(binomial(j,n+l-j-i)*2^(-n+l+2*j+i)*3^(n-l-j+1)*binomial(n-l+1,j),j,0,n-l+1),i,l,n+l),l,0,n+1)/(n+1); /* Vladimir Kruchinin, Feb 28 2016 */

Formula

G.f.: P0(x) = 1/(1-x-x*P1(x)), where P1(x) = 2*(1-x)/(3*x) - 2*(sqrt(1-5*x-2*x^2)/(3*x))*sin(Pi/6 + arccos((20*x^3-6*x^2+15*x-2)/(2*(1-5*x-2*x^2)^(3/2)))/3). - See Dziemianczuk (2014), Proposition 11.
a(n) = Sum_{m=0..n+1} ((-1)^(n-m+1)*binomial(n+1,m) * Sum_{i=m..n+m} (binomial(i-1,i-m) * Sum_{j=0..n-m+1} (binomial(j,n+m-j-i)*2^(-n+m+2*j+i)*3^(n-m-j+1)*binomial(n-m+1,j))))/(n+1). - Vladimir Kruchinin, Feb 28 2016
a(n) ~ c * (22 + 10*sqrt(5))^(n/2) / n^(3/2), where c = 1/sqrt((5/2 - sqrt(5) + sqrt(85*sqrt(5)-190))*Pi) = 0.7820861193303307654051... . - Vaclav Kotesovec, Feb 28 2016

Extensions

More terms from Lars Blomberg, Aug 01 2015