cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260773 Certain directed lattice paths.

Original entry on oeis.org

1, 1, 2, 7, 30, 142, 716, 3771, 20502, 114194, 648276, 3737270, 21819980, 128757020, 766680856, 4600866643, 27797553638, 168949310378, 1032267189636, 6336728149794, 39062959379620, 241720286906116, 1500910751651752, 9348824475860702, 58398701313158780
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Programs

  • Maxima
    a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j-2,n-4*j-1),j,0,floor((n-1)/4))/n; /* Vladimir Kruchinin, Apr 04 2019 */

Formula

G.f.: P2(x) = (1-x*P1(x))/(1-x-x*P1(x)), where P1(x) = 2*(1-x)/(3*x) - (2*sqrt(1-5*x-2*x^2)/(3*x))*sin(Pi/6 + arccos((20*x^3-6*x^2+15*x-2)/(2*(1-5*x-2*x^2)^(3/2)))/3). - See Dziemianczuk (2014), Proposition 11.
a(n) = A260771(n-1), n > 0 [see Proof of Proposition 11]. - R. J. Mathar, Aug 02 2015
a(n) = (1/n)*Sum_{j=0..floor((n-1)/4)} (-1)^j*C(n,j)*C(3*n-4*j-2,n-4*j-1), a(0)=1. - Vladimir Kruchinin, Apr 04 2019

Extensions

More terms from Lars Blomberg, Aug 01 2015