A260793 Primes p such that p does not divide any term of the Apéry-like sequence A000172 (also known as Type I primes).
3, 11, 17, 19, 43, 83, 89, 97, 113, 137, 139, 163, 193, 211, 233, 241, 283, 307, 313, 331, 347, 353, 379, 401, 409, 419, 433, 443, 491, 499, 523, 547, 569, 587, 601, 617, 619, 641, 643, 673, 811, 827, 859, 881, 929, 947, 953, 977, 1009, 1019, 1033, 1049, 1051
Offset: 1
Keywords
Links
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
- Amita Malik and Armin Straub, Lists of all primes up to 10000 in A133370 and A260793, A291275-A291284, together with Mathematica code.
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
- A. Schulte, S. VanSchalkwyk, A. Yang, On the divisibility and valuations of the Franel numbers, in MSRI-UP Research Reports, 2014.
- A. Schulte, S. VanSchalkwyk, A. Yang, On the divisibility and valuations of the Franel numbers, Examples of Outstanding Student Posters, MAA.
Crossrefs
Programs
-
Mathematica
maxPrime = 1051; maxPi = PrimePi @ maxPrime; okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{-#, -#, -#}, {1, 1}, -1], p] == 1&]; Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)
Extensions
Edited by N. J. A. Sloane, Aug 22 2017
Comments