cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A000172 The Franel number a(n) = Sum_{k = 0..n} binomial(n,k)^3.

Original entry on oeis.org

1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, 38165260, 278415920, 2046924400, 15148345760, 112738423360, 843126957056, 6332299624282, 47737325577620, 361077477684436, 2739270870994736, 20836827035351596, 158883473753259752, 1214171997616258240
Offset: 0

Views

Author

Keywords

Comments

Cusick gives a general method of deriving recurrences for the r-th order Franel numbers (this is the sequence of third-order Franel numbers), with floor((r+3)/2) terms.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
An identity of V. Strehl states that a(n) = Sum_{k = 0..n} C(n,k)^2 * binomial(2*k,n). Zhi-Wei Sun conjectured that for every n = 2,3,... the polynomial f_n(x) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(2*k,n) * x^(n-k) is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Conjecture: a(n) == 2 (mod n^3) iff n is prime. - Gary Detlefs, Mar 22 2013
a(p) == 2 (mod p^3) for any prime p since p | C(p,k) for all k = 1,...,p-1. - Zhi-Wei Sun, Aug 14 2013
a(n) is the maximal number of totally mixed Nash equilibria in games of 3 players, each with n+1 pure options. - Raimundas Vidunas, Jan 22 2014
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 2*x*y*z), 1/(1 - x - y - z + 4*x*y*z), 1/(1 + y + z + x*y + y*z + x*z + 2*x*y*z), 1/(1 + x + y + z + 2*(x*y + y*z + x*z) + 4*x*y*z). - Gheorghe Coserea, Jul 04 2018
a(n) is the constant term in the expansion of ((1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - x*y*z). - Seiichi Manyama, Jul 11 2020
Named after the Swiss mathematician Jérôme Franel (1859-1939). - Amiram Eldar, Jun 15 2021
It appears that a(n) is equal to the coefficient of (x*y*z)^n in the expansion of (1 + x + y - z)^n * (1 + x - y + z)^n * (1 - x + y + z)^n. Cf. A036917. - Peter Bala, Sep 20 2021

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 56*x^3 + 346*x^4 + 2252*x^5 + ...
O.g.f.: A(x) = 1/(1-2*x) + 3!*x^2/(1-2*x)^4 + (6!/2!^3)*x^4/(1-2*x)^7 + (9!/3!^3)*x^6/(1-2*x)^10 + (12!/4!^3)*x^8/(1-2*x)^13 + ... - _Paul D. Hanna_, Oct 30 2010
Let g.f. A(x) = Sum_{n >= 0} a(n)*x^n/n!^3, then
A(x) = 1 + 2*x + 10*x^2/2!^3 + 56*x^3/3!^3 + 346*x^4/4!^3 + ... where
A(x) = [1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 + ...]^2. - _Paul D. Hanna_
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • Jérôme Franel, On a question of Laisant, Intermédiaire des Mathématiciens, vol 1 1894 pp 45-47
  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 56.
  • Murray Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 148-149.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002893, A052144, A005260, A096191, A033581, A189791. Second row of array A094424.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Column k=3 of A372307.

Programs

  • Haskell
    a000172 = sum . map a000578 . a007318_row
    -- Reinhard Zumkeller, Jan 06 2013
    
  • Maple
    A000172 := proc(n)
        add(binomial(n,k)^3,k=0..n) ;
    end proc:
    seq(A000172(n),n=0..10) ; # R. J. Mathar, Jul 26 2014
    A000172_list := proc(len) series(hypergeom([], [1, 1], x)^2, x, len);
    seq((n!)^3*coeff(%, x, n), n=0..len-1) end:
    A000172_list(21); # Peter Luschny, May 31 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^3,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Aug 24 2011 *)
    Table[ HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1], {n, 0, 20}]  (* Jean-François Alcover, Jul 16 2012, after symbolic sum *)
    a[n_] := Sum[ Binomial[2k, n]*Binomial[2k, k]*Binomial[2(n-k), n-k], {k, 0, n}]/2^n; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 20 2013, after Zhi-Wei Sun *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/3, 2/3, 1, 27 x^2 / (1 - 2 x)^3] / (1 - 2 x), {x, 0, n}]; (* Michael Somos, Jul 16 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(3*m)!/m!^3*x^(2*m)/(1-2*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Oct 30 2010
    
  • PARI
    {a(n)=n!^3*polcoeff(sum(m=0,n,x^m/m!^3+x*O(x^n))^2,n)} \\ Paul D. Hanna, Jan 19 2011
    
  • PARI
    A000172(n)={sum(k=0,(n-1)\2,binomial(n,k)^3)*2+if(!bittest(n,0),binomial(n,n\2)^3)} \\ M. F. Hasler, Sep 21 2015
    
  • Sage
    def A000172():
        x, y, n = 1, 2, 1
        while True:
            yield x
            n += 1
            x, y = y, (8*(n-1)^2*x + (7*n^2-7*n + 2)*y) // n^2
    a = A000172()
    [next(a) for i in range(21)]   # Peter Luschny, Oct 12 2013

Formula

A002893(n) = Sum_{m = 0..n} binomial(n, m)*a(m) [Barrucand].
Sum_{k = 0..n} C(n, k)^3 = (-1)^n*Integral_{x = 0..infinity} L_k(x)^3 exp(-x) dx. - from Askey's book, p. 43.
D-finite with recurrence (n + 1)^2*a(n+1) = (7*n^2 + 7*n + 2)*a(n) + 8*n^2*a(n-1) [Franel]. - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 31 2001
a(n) ~ 2*3^(-1/2)*Pi^-1*n^-1*2^(3*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
O.g.f.: A(x) = Sum_{n >= 0} (3*n)!/n!^3 * x^(2*n)/(1 - 2*x)^(3*n+1). - Paul D. Hanna, Oct 30 2010
G.f.: hypergeom([1/3, 2/3], [1], 27 x^2 / (1 - 2x)^3) / (1 - 2x). - Michael Somos, Dec 17 2010
G.f.: Sum_{n >= 0} a(n)*x^n/n!^3 = [ Sum_{n >= 0} x^n/n!^3 ]^2. - Paul D. Hanna, Jan 19 2011
G.f.: A(x) = 1/(1-2*x)*(1+6*(x^2)/(G(0)-6*x^2)),
with G(k) = 3*(x^2)*(3*k+1)*(3*k+2) + ((1-2*x)^3)*((k+1)^2) - 3*(x^2)*((1-2*x)^3)*((k+1)^2)*(3*k+4)*(3*k+5)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
In 2011 Zhi-Wei Sun found the formula Sum_{k = 0..n} C(2*k,n)*C(2*k,k)*C(2*(n-k),n-k) = (2^n)*a(n) and proved it via the Zeilberger algorithm. - Zhi-Wei Sun, Mar 20 2013
0 = a(n)*(a(n+1)*(-2048*a(n+2) - 3392*a(n+3) + 768*a(n+4)) + a(n+2)*(-1280*a(n+2) - 2912*a(n+3) + 744*a(n+4)) + a(n+3)*(+288*a(n+3) - 96*a(n+4))) + a(n+1)*(a(n+1)*(-704*a(n+2) - 1232*a(n+3) + 288*a(n+4)) + a(n+2)*(-560*a(n+2) - 1372*a(n+3) + 364*a(n+4)) + a(n+3)*(+154*a(n+3) - 53*a(n+4))) + a(n+2)*(a(n+2)*(+24*a(n+2) + 70*a(n+3) - 20*a(n+4)) + a(n+3)*(-11*a(n+3) + 4*a(n+4))) for all n in Z. - Michael Somos, Jul 16 2014
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^3*C(n,k)^3 = C(n,r)^3*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^2. - Peter Luschny, May 31 2017
From Gheorghe Coserea, Jul 04 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 2^(n-2*k).
G.f. y=A(x) satisfies: 0 = x*(x + 1)*(8*x - 1)*y'' + (24*x^2 + 14*x - 1)*y' + 2*(4*x + 1)*y. (End)
a(n) = [x^n] (1 - x^2)^n*P(n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 56. - Peter Bala, Mar 24 2022
a(n) = (2^n/(4*Pi^2)) * Integral_{x,y=0..2*Pi} (1+cos(x)+cos(y)+cos(x+y))^n dx dy = (8^n/(Pi^2)) * Integral_{x,y=0..Pi} (cos(x)*cos(y)*cos(x+y))^n dx dy (Pla, 1995). - Amiram Eldar, Jul 16 2022
a(n) = Sum_{k = 0..n} m^(n-k)*binomial(n,k)*binomial(n+2*k,n)*binomial(2*k,k) at m = -4. Cf. A081798 (m = 1), A006480 (m = 0), A124435 (m = -1), A318109 (m = -2) and A318108 (m = -3). - Peter Bala, Mar 16 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=2*(1 + 4*x)*T(x) + (-1 + 14*x + 24*x^2)*T'(x) + x*(1 + x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (4/243)*(1 - 8*x + 240*x^2 - 464*x^3 + 16*x^4);
g3 = -(8/19683)*(1 - 12*x - 480*x^2 + 3080*x^3 - 12072*x^4 + 4128*x^5 +
64*x^6);
which determine an elliptic surface with four singular fibers. (End)
From Peter Bala, Oct 31 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k). Cf. A361716.
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n + 1], [1, 1], -1). (End)

A005259 Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.

Original entry on oeis.org

1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, 468690849005, 13657436403073, 403676083788125, 12073365010564729, 364713572395983725, 11111571997143198073, 341034504521827105445, 10534522198396293262825, 327259338516161442321485
Offset: 0

Views

Author

Keywords

Comments

Conjecture: For each n = 1,2,3,... the Apéry polynomial A_n(x) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
The expansions of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + 7038*x^4 + 144550*x^5 + ... both appear to have integer coefficients. See A267220. - Peter Bala, Jan 12 2016
Diagonal of the rational function R(x, y, z, w) = 1 / (1 - (w*x*y*z + w*x*y + w*z + x*y + x*z + y + z)); also diagonal of rational function H(x, y, z, w) = 1/(1 - w*(1+x)*(1+y)*(1+z)*(x*y*z + y*z + y + z + 1)). - Gheorghe Coserea, Jun 26 2018
Named after the French mathematician Roger Apéry (1916-1994). - Amiram Eldar, Jun 10 2021

Examples

			G.f. = 1 + 5*x + 73*x^2 + 1445*x^3 + 33001*x^4 + 819005*x^5 + 21460825*x^6 + ...
a(2) = (binomial(2,0) * binomial(2+0,0))^2 + (binomial(2,1) * binomial(2+1,1))^2 + (binomial(2,2) * binomial(2+2,2))^2 = (1*1)^2 + (2*3)^2 + (1*6)^2 = 1 + 36 + 36 = 73. - _Michael B. Porter_, Jul 14 2016
		

References

  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.
  • Wolfram Koepf, Hypergeometric Identities. Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 55, 119 and 146, 1998.
  • Maxim Kontsevich and Don Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  • Leonard Lipshitz and Alfred van der Poorten, "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), pp. 339-358.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Cf. A092826 (prime terms).

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*Binomial(n+k,k)^2)); # Muniru A Asiru, Sep 28 2018
    
  • Haskell
    a005259 n = a005259_list !! n
    a005259_list = 1 : 5 : zipWith div (zipWith (-)
       (tail $ zipWith (*) a006221_list a005259_list)
       (zipWith (*) (tail a000578_list) a005259_list)) (drop 2 a000578_list)
    -- Reinhard Zumkeller, Mar 13 2014
    
  • Magma
    [&+[Binomial(n, k) ^2 *Binomial(n+k, k)^2: k in [0..n]]:n in  [0..17]]; // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a := proc(n) option remember; if n=0 then 1 elif n=1 then 5 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
    # Alternative:
    a := n -> hypergeom([-n, -n, 1+n, 1+n], [1, 1, 1], 1):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Jan 19 2020
  • Mathematica
    Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1,1,1}, 1],{n,0,13}] (* Jean-François Alcover, Apr 01 2011 *)
    Table[Sum[(Binomial[n,k]Binomial[n+k,k])^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 15 2011 *)
    a[ n_] := SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ 1 / (1 - t (1 + x ) (1 + y ) (1 + z ) (x y z + (y + 1) (z + 1))), {t, 0, n}], {x, 0, n}], {y, 0, n}], {z, 0, n}]; (* Michael Somos, May 14 2016 *)
  • PARI
    a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k,k))^2) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    def A005259(n):
        m, g = 1, 0
        for k in range(n+1):
            g += m
            m *= ((n+k+1)*(n-k))**2
            m //=(k+1)**4
        return g # Chai Wah Wu, Oct 02 2022

Formula

D-finite with recurrence (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*a(n) - n^3*a(n-1), n >= 1.
Representation as a special value of the hypergeometric function 4F3, in Maple notation: a(n)=hypergeom([n+1, n+1, -n, -n], [1, 1, 1], 1), n=0, 1, ... - Karol A. Penson Jul 24 2002
a(n) = Sum_{k >= 0} A063007(n, k)*A000172(k). A000172 = Franel numbers. - Philippe Deléham, Aug 14 2003
G.f.: (-1/2)*(3*x - 3 + (x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2 - 7*x + 1)*(x+1)^(-3)*(x^2 - 34*x + 1)^(1/2)+(1/2)*(x^3 + 30*x^2 - 24*x + 1)*(x+1)^(-3))^2. - Mark van Hoeij, Oct 29 2011
Let g(x, y) = 4*cos(2*x) + 8*sin(y)*cos(x) + 5 and let P(n,z) denote the Legendre polynomial of degree n. Then G. A. Edgar posted a conjecture of Alexandru Lupas that a(n) equals the double integral 1/(4*Pi^2)*int {y = -Pi..Pi} int {x = -Pi..Pi} P(n,g(x,y)) dx dy. (Added Jan 07 2015: Answered affirmatively in Math Overflow question 178790) - Peter Bala, Mar 04 2012; edited by G. A. Edgar, Dec 10 2016
a(n) ~ (1+sqrt(2))^(4*n+2)/(2^(9/4)*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 01 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * C(n+k,k)^2. - Joerg Arndt, May 11 2013
0 = (-x^2+34*x^3-x^4)*y''' + (-3*x+153*x^2-6*x^3)*y'' + (-1+112*x-7*x^2)*y' + (5-x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Peter Bala, Jan 18 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j) * C(n,k)^2 * C(n+k,k)^2 * C(n,j) * C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} C(n,k) * C(n+k,k) * C(k,j)^3 (see Koepf, p. 55).
a(n) = Sum_{0 <= j, k <= n} C(n,k)^2 * C(n,j)^2 * C(3*n-j-k,2*n) (see Koepf, p. 119).
Diagonal coefficients of the rational function 1/((1 - x - y)*(1 - z - t) - x*y*z*t) (Straub, 2014). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 2. At m = 1 we get the Apéry numbers A005258. - Peter Bala, Dec 22 2020
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k). - Peter Bala, Jul 18 2024
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,k)^2 * C(n,j)^2 * C(k+j,k), see Labelle et al. link. - Max Alekseyev, Mar 12 2025

A005258 Apéry numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k).

Original entry on oeis.org

1, 3, 19, 147, 1251, 11253, 104959, 1004307, 9793891, 96918753, 970336269, 9807518757, 99912156111, 1024622952993, 10567623342519, 109527728400147, 1140076177397091, 11911997404064793, 124879633548031009, 1313106114867738897, 13844511065506477501
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Equals the main diagonal of square array A108625. - Paul D. Hanna, Jun 14 2005
This sequence is t_5 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Conjecture: For each n=1,2,3,... the polynomial a_n(x) = Sum_{k=0..n} C(n,k)^2*C(n+k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Diagonal of rational functions 1/(1 - x - x*y - y*z - x*z - x*y*z), 1/(1 + y + z + x*y + y*z + x*z + x*y*z), 1/(1 - x - y - z + x*y + x*y*z), 1/(1 - x - y - z + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 07 2018

Examples

			G.f. = 1 + 3*x + 19*x^2 + 147*x^3 + 1251*x^4 + 11253*x^5 + 104959*x^6 + ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • S. Melczer, An Invitation to Analytic Combinatorics, 2021; p. 129.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007318.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • GAP
    a:=n->Sum([0..n],k->(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)^2);;
    A005258:=List([0..20],n->a(n));; # Muniru A Asiru, Feb 11 2018
    
  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*Binomial(n+k,k))); # Muniru A Asiru, Jul 29 2018
    
  • Haskell
    a005258 n = sum [a007318 n k ^ 2 * a007318 (n + k) k | k <- [0..n]]
    -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    [&+[Binomial(n,k)^2 * Binomial(n+k,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Nov 28 2018
    
  • Maple
    with(combinat): seq(add((multinomial(n+k,n-k,k,k))*binomial(n,k), k=0..n), n=0..18); # Zerinvary Lajos, Oct 18 2006
    a := n -> binomial(2*n, n)*hypergeom([-n, -n, -n], [1, -2*n], 1):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 10 2018
  • Mathematica
    a[n_] := HypergeometricPFQ[ {n+1, -n, -n}, {1, 1}, 1]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *)
    Table[Sum[Binomial[n,k]^2 Binomial[n+k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    {a(n) = if( n<0, -(-1)^n * a(-1-n), sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)))} /* Michael Somos, Sep 18 2013 */
    
  • Python
    def A005258(n):
        m, g = 1, 0
        for k in range(n+1):
            g += m
            m *= (n+k+1)*(n-k)**2
            m //= (k+1)**3
        return g # Chai Wah Wu, Oct 02 2022

Formula

a(n) = hypergeom([n+1, -n, -n], [1, 1], 1). - Vladeta Jovovic, Apr 24 2003
D-finite with recurrence: (n+1)^2 * a(n+1) = (11*n^2+11*n+3) * a(n) + n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Let b(n) be the solution to the above recurrence with b(0) = 0, b(1) = 5. Then the b(n) are rational numbers with b(n)/a(n) -> zeta(2) very rapidly. The identity b(n)*a(n-1) - b(n-1)*a(n) = (-1)^(n-1)*5/n^2 leads to a series acceleration formula: zeta(2) = 5 * Sum_{n >= 1} 1/(n^2*a(n)*a(n-1)) = 5*(1/(1*3) + 1/(2^2*3*19) + 1/(3^2*19*147) + ...). Similar results hold for the constant e: see A143413. - Peter Bala, Aug 14 2008
G.f.: hypergeom([1/12, 5/12],[1], 1728*x^5*(1-11*x-x^2)/(1-12*x+14*x^2+12*x^3+x^4)^3) / (1-12*x+14*x^2+12*x^3+x^4)^(1/4). - Mark van Hoeij, Oct 25 2011
a(n) ~ ((11+5*sqrt(5))/2)^(n+1/2)/(2*Pi*5^(1/4)*n). - Vaclav Kotesovec, Oct 05 2012
1/Pi = 5*(sqrt(47)/7614)*Sum_{n>=0} (-1)^n a(n)*binomial(2n,n)*(682n+71)/15228^n. [Cooper, equation (4)] - Jason Kimberley, Nov 26 2012
a(-1 - n) = (-1)^n * a(n) if n>=0. a(-1 - n) = -(-1)^n * a(n) if n<0. - Michael Somos, Sep 18 2013
0 = a(n)*(a(n+1)*(+4*a(n+2) + 83*a(n+3) - 12*a(n+4)) + a(n+2)*(+32*a(n+2) + 902*a(n+3) - 147*a(n+4)) + a(n+3)*(-56*a(n+3) + 12*a(n+4))) + a(n+1)*(a(n+1)*(+17*a(n+2) + 374*a(n+3) - 56*a(n+4)) + a(n+2)*(+176*a(n+2) + 5324*a(n+3) - 902*a(n+4)) + a(n+3)*(-374*a(n+3) + 83*a(n+4))) + a(n+2)*(a(n+2)*(-5*a(n+2) - 176*a(n+3) + 32*a(n+4)) + a(n+3)*(+17*a(n+3) - 4*a(n+4))) for all n in Z. - Michael Somos, Aug 06 2016
a(n) = binomial(2*n, n)*hypergeom([-n, -n, -n],[1, -2*n], 1). - Peter Luschny, Feb 10 2018
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(n+k,k)^2. - Peter Bala, Feb 10 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 + 11*x - 1)*y'' + (3*x^2 + 22*x - 1)*y' + (x + 3)*y. - Gheorghe Coserea, Jul 01 2018
From Peter Bala, Jan 15 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(j+k)*C(n,k)*C(n+k,k)^2*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)^2*C(n+k,k)*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^j*C(n,k)^2*C(n,j)*C(3*n-j-k,2*n). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 1. At m = 2 we get the Apéry numbers A005259. - Peter Bala, Dec 22 2020
a(n) = (-1)^n*Sum_{j=0..n} (1 - 5*j*H(j) + 5*j*H(n - j))*binomial(n, j)^5, where H(n) denotes the n-th harmonic number, A001008/A002805. (Paule/Schneider). - Peter Luschny, Jul 23 2021
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=(3 + x)*T(x) + (-1 + 22*x + 3*x^2)*T'(x) + x*(-1 + 11*x + x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 12*x + 14*x^2 + 12*x^3 + x^4);
g3 = 1 - 18*x + 75*x^2 + 75*x^4 + 18*x^5 + x^6;
which determine an elliptic surface with four singular fibers. (End)
Conjecture: a(n)^2 = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A143007(n, k). - Peter Bala, Jul 08 2024

A002893 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).

Original entry on oeis.org

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025, 79326566595, 663835030335, 5582724468093, 47152425626559, 399769750195965, 3400775573443089, 29016970072920387, 248256043372999089
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
a(n) is the 2n-th moment of the distance from the origin of a 3-step random walk in the plane. - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004
a(n) is the number of Abelian squares of length 2n over a 3-letter alphabet. - Jeffrey Shallit, Aug 17 2010
Consider 2D simple random walk on honeycomb lattice. a(n) gives number of paths of length 2n ending at origin. - Sergey Perepechko, Feb 16 2011
Row sums of A318397 the square of A008459. - Peter Bala, Mar 05 2013
Conjecture: For each n=1,2,3,... the polynomial g_n(x) = Sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
a(n) is the sum of the squares of the coefficients of (x + y + z)^n. - Michael Somos, Aug 25 2018
a(n) is the constant term in the expansion of (1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 28 2019

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 639*x^4 + 4653*x^5 + 35169*x^6 + ...
G.f.: A(x) = 1/(1-3*x) + 6*x^2*(1-x)/(1-3*x)^4 + 90*x^4*(1-x)^2/(1-3*x)^7 + 1680*x^6*(1-x)^3/(1-3*x)^10 + 34650*x^8*(1-x)^4/(1-3*x)^13 + ... - _Paul D. Hanna_, Feb 26 2012
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Magma
    [&+[Binomial(n, k)^2 * Binomial(2*k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    series(1/GaussAGM(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)), x=0, 42) # Gheorghe Coserea, Aug 17 2016
    A002893 := n -> hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002893(n)), n=0..20); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Aug 19 2011 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {1/2, -n, -n}, {1, 1}, 4]]; (* Michael Somos, Oct 16 2013 *)
    a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^3, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 30 2013 *)
    a[ n_] := If[ n < 0, 0, Block[ {x, y, z},  Expand[(x + y + z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 25 2018 *)
  • PARI
    {a(n) = if( n<0, 0, n!^2 * polcoeff( besseli(0, 2*x + O(x^(2*n+1)))^3, 2*n))};
    
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k))}; /* Michael Somos, Jul 25 2007 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3 * x^(2*m)*(1-x)^m / (1-3*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    N = 42; x='x + O('x^N); v = Vec(1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3))); vector((#v+1)\2, k, v[2*k-1])  \\ Gheorghe Coserea, Aug 17 2016
    
  • SageMath
    def A002893(n): return simplify(hypergeometric([1/2,-n,-n], [1,1], 4))
    [A002893(n) for n in range(31)] # G. C. Greubel, Jan 21 2023

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * A000172(m). [Barrucand]
D-finite with recurrence: (n+1)^2 a(n+1) = (10*n^2+10*n+3) * a(n) - 9*n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^3. - Vladeta Jovovic, Mar 11 2003
a(n) = Sum_{p+q+r=n} (n!/(p!*q!*r!))^2 with p, q, r >= 0. - Michael Somos, Jul 25 2007
a(n) = 3*A087457(n) for n>0. - Philippe Deléham, Sep 14 2008
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4). - Mark van Hoeij, Jun 02 2010
G.f.: 2*sqrt(2)/Pi/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z))) * EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))). - Sergey Perepechko, Feb 16 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1-x)^n / (1-3*x)^(3*n+1). - Paul D. Hanna, Feb 26 2012
Asymptotic: a(n) ~ 3^(2*n+3/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 11 2012
G.f.: 1/(1-3*x)*(1-6*x^2*(1-x)/(Q(0)+6*x^2*(1-x))), where Q(k) = (54*x^3 - 54*x^2 + 9*x -1)*k^2 + (81*x^3 - 81*x^2 + 18*x -2)*k + 33*x^3 - 33*x^2 +9*x - 1 - 3*x^2*(1-x)*(1-3*x)^3*(k+1)^2*(3*k+4)*(3*k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/(2*(1-9*x)^(2/3)), where G(k) = 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = [x^(2n)] 1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)). - Gheorghe Coserea, Aug 17 2016
0 = +a(n)*(+a(n+1)*(+729*a(n+2) -1539*a(n+3) +243*a(n+4)) +a(n+2)*(-567*a(n+2) +1665*a(n+3) -297*a(n+4)) +a(n+3)*(-117*a(n+3) +27*a(n+4))) +a(n+1)*(+a(n+1)*(-324*a(n+2) +720*a(n+3) -117*a(n+4)) +a(n+2)*(+315*a(n+2) -1000*a(n+3) +185*a(n+4)) +a(n+3)*(+80*a(n+3) -19*a(n+4))) +a(n+2)*(+a(n+2)*(-9*a(n+2) +35*a(n+3) -7*a(n+4)) +a(n+3)*(-4*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Oct 30 2017
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(9*x - 1)*y'' + (27*x^2 - 20*x + 1)*y' + 3*(3*x - 1)*y. - Gheorghe Coserea, Jul 01 2018
Sum_{k>=0} binomial(2*k,k) * a(k) / 6^(2*k) = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 3*x)*T(x) + (1 - 20*x + 27*x^2)*T'(x) + x*(-1 + x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (3/64)*(1 + 3*x)*(1 - 15*x + 75*x^2 + 3*x^3);
g3 = -(1/512)*(-1 + 6*x + 3*x^2)*(1 - 12*x + 30*x^2 - 540*x^3 + 9*x^4);
which determine an elliptic surface with four singular fibers. (End)
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(3*k, 2*n) (Almkvist, p. 16). - Peter Bala, May 22 2025

A002895 Domb numbers: number of 2n-step polygons on diamond lattice.

Original entry on oeis.org

1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528, 167595457792, 2359613230144, 33557651538688, 481365424895488, 6956365106016256, 101181938814289564, 1480129751586116848, 21761706991570726096, 321401321741959062016
Offset: 0

Views

Author

Keywords

Comments

a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane. - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004
Row sums of the cube of A008459. - Peter Bala, Mar 05 2013
Conjecture: Let D(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0..n. Then the number D(n)/12^n is always a positive odd integer. - Zhi-Wei Sun, Aug 14 2013
It appears that the expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ... and exp( Sum_{n >= 1} 1/4*a(n)*x^n/n ) = 1 + x + 4*x^2 + 25*x^3 + 199*x^4 + ... have integer coefficients. See A267219. - Peter Bala, Jan 12 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Named after the British-Israeli theoretical physicist Cyril Domb (1920-2012). - Amiram Eldar, Mar 20 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    A002895 := n -> add(binomial(n,k)^2*binomial(2*n-2*k,n-k)*binomial(2*k,k), k=0..n): seq(A002895(n), n=0..25); # Wesley Ivan Hurt, Dec 20 2015
    A002895 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n, -n],[1, 1, 1/2 - n], 1):
    seq(simplify(A002895(n)), n=0..19); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2 Binomial[2n-2k,n-k]Binomial[2k,k],{k,0,n}], {n,0,30}] (* Harvey P. Dale, Aug 15 2011 *)
    a[n_] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n, -n}, {1, 1, 1/2-n}, 1]; (* or *) a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^4, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 30 2013, after Vladeta Jovovic *)
    max = 19; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 3] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
  • PARI
    C=binomial;
    a(n) = sum(k=0,n, C(n,k)^2 * C(2*n-2*k,n-k) * C(2*k,k) );
    /* Joerg Arndt, Apr 19 2013 */
    
  • Python
    from math import comb
    def A002895(n): return (sum(comb(n,k)**2*comb(n-k<<1,n-k)*comb(m:=k<<1,k) for k in range(n+1>>1))<<1) + (0 if n&1 else comb(n,n>>1)**4) # Chai Wah Wu, Jun 17 2025

Formula

a(n) = Sum_{k=0..n} binomial(n, k)^2 * binomial(2n-2k, n-k) * binomial(2k, k).
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1) - 64*(n-1)^3*a(n-2). - Vladeta Jovovic, Jul 16 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4. - Vladeta Jovovic, Aug 01 2006
G.f.: hypergeom([1/6, 1/3],[1],108*x^2/(1-4*x)^3)^2/(1-4*x). - Mark van Hoeij, Oct 29 2011
From Zhi-Wei Sun, Mar 20 2013: (Start)
Via the Zeilberger algorithm, Zhi-Wei Sun proved that:
(1) 4^n*a(n) = Sum_{k = 0..n} (binomial(2k,k)*binomial(2(n-k),n-k))^3/ binomial(n,k)^2,
(2) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(2k,n)*binomial(2k,k)* binomial(2(n-k),n-k). (End)
a(n) ~ 2^(4*n+1)/((Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 20 2013
G.f. y=A(x) satisfies: 0 = x^2*(4*x - 1)*(16*x - 1)*y''' + 3*x*(128*x^2 - 30*x + 1)*y'' + (448*x^2 - 68*x + 1)*y' + 4*(16*x - 1)*y. - Gheorghe Coserea, Jun 26 2018
a(n) = Sum_{p+q+r+s=n} (n!/(p!*q!*r!*s!))^2 with p,q,r,s >= 0. See Verrill, p. 5. - Peter Bala, Jan 06 2020
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^3*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A081085. (End)

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A081085 Expansion of 1 / AGM(1, 1 - 8*x) in powers of x.

Original entry on oeis.org

1, 4, 20, 112, 676, 4304, 28496, 194240, 1353508, 9593104, 68906320, 500281280, 3664176400, 27033720640, 200683238720, 1497639994112, 11227634469668, 84509490017680, 638344820152784, 4836914483890112, 36753795855173776, 279985580271435584, 2137790149251471680
Offset: 0

Views

Author

Michael Somos, Mar 04 2003

Keywords

Comments

AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
This is the exponential (also known as binomial) convolution of sequence A000984 (central binomial) with itself. See the V. Jovovic e.g.f. and a(n) formulas given below. - Wolfdieter Lang, Jan 13 2012
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
The recursion (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1) with n=0 has zero coefficient for a(-1) and thus a(-1) is not determined uniquely by it, but defining a(-1) = 2^(-5/2) makes a(n) = a(-1-n) * 32^(n-1/2) true for all n in Z. - Michael Somos, Apr 05 2022

Examples

			G.f. = A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4304*x^5 + 28496*x^6 + ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    seq(simplify(binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1)), n = 0..22); # Peter Bala, Jul 25 2024
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[2*n-2*k,n-k]*Binomial[2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1/2, 1, 16 x (1 - 4 x)], {x, 0, n}]; (* Michael Somos, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / NestWhile[ {(#[[1]] + #[[2]])/2, Sqrt[#[[1]] #[[2]]]} &, {1, Series[ 1 - 8 x, {x, 0, n}]}, #[[1]] =!= #[[2]] &] // First, {x, 0, n}]]; (* Michael Somos, Oct 27 2014 *)
    CoefficientList[Series[2*EllipticK[1/(1 - 1/(4*x))^2] / (Pi*(1 - 4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
    a[n_] := Binomial[2 n, n] HypergeometricPFQ[{1/2, -n, -n},{1, 1/2 - n}, -1];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 05 2022 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 8 * x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0,0, 4^n * sum( k=0, n\2, binomial( n, 2*k) * binomial( 2*k, k)^2 / 16^k))};
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,(2*k)!*x^k/(k!)^3 +x*O(x^n))^2,n)} /* Paul D. Hanna, Sep 04 2009 */
    
  • Python
    from math import comb
    def A081085(n): return sum((1<<(n-(m:=k<<1)<<1))*comb(n,m)*comb(m,k)**2 for k in range((n>>1)+1)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: 1 / AGM(1, 1 - 8*x).
E.g.f.: exp(4*x)*BesselI(0, 2*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) = binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1). - Vladeta Jovovic, Sep 16 2003
D-finite with recurrence (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1). - Matthijs Coster, Apr 28 2004
E.g.f.: [Sum_{n>=0} binomial(2n,n)*x^n/n! ]^2. - Paul D. Hanna, Sep 04 2009
G.f.: Gaussian Hypergeometric function 2F1(1/2, 1/2; 1; 16*x-64*x^2). - Mark van Hoeij, Oct 24 2011
a(n) = 2^(-n) * A053175(n).
a(n) ~ 2^(3*n+1)/(Pi*n). - Vaclav Kotesovec, Oct 13 2012
0 = x*(x+4)*(x+8)*y'' + (3*x^2 + 24*x + 32)*y' + (x+4)*y, where y(x) = A(x/-32). - Gheorghe Coserea, Aug 26 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)^2. - Seiichi Manyama, Apr 02 2017
a(n) = (1/Pi)^2*Integral_{0 <= x, y <= Pi} (4*cos(x)^2 + 4*cos(y)^2)^n dx dy. - Peter Bala, Feb 10 2022
a(n) = a(-1-n)*32^(n-1/2) and 0 = +a(n)*(+a(n+1)*(+32768*a(n+2) -23552*a(n+3) +3072*a(n+4)) +a(n+2)*(-8192*a(n+2) +8448*a(n+3) -1248*a(n+4)) +a(n+3)*(-512*a(n+3) +96*a(n+4))) +a(n+1)*(+a(n+1)*(-5120*a(n+2) +3840*a(n+3) -512*a(n+4)) +a(n+2)*(+1536*a(n+2) -1728*a(n+3) +264*a(n+4)) +a(n+3)*(+120*a(n+3) -23*a(n+4))) +a(n+2)*(+a(n+2)*(-32*a(n+2) +48*a(n+3) -8*a(n+4)) +a(n+3)*(-5*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Apr 04 2022
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=4*(-1 + 8*x)*T(x) + (1 - 24*x + 96*x^2)*T'(x) + x*(-1 + 4*x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 16*(1 - 8*x)^2 + 16*(1 - 8*x)^4);
g3 = 1 + 30*(1 - 8*x)^2 - 96*(1 - 8*x)^4 + 64*(1 - 8*x)^6;
which determine an elliptic surface with four singular fibers. (End)
G.f.: Sum_{n>=0} binomial(2*n,n)^2 * x^n * (1 - 4*x)^n. - Paul D. Hanna, Apr 18 2024
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^2*binomial(n, k)*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A002895. (End)

A006077 (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.

Original entry on oeis.org

1, 3, 9, 21, 9, -297, -2421, -12933, -52407, -145293, -35091, 2954097, 25228971, 142080669, 602217261, 1724917221, 283305033, -38852066421, -337425235479, -1938308236731, -8364863310291, -24286959061533, -3011589296289, 574023003011199, 5028616107443691
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Conjecture: Let W(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. If n == 1 (mod 3) then W(n) = 0. When n == 0 or 2 (mod 3), W(n)*(-1)^(floor((n+1)/3))/6^n is always a positive odd integer. - Zhi-Wei Sun, Aug 21 2013
Conjecture: Let p == 1 (mod 3) be a prime, and write 4*p = x^2 + 27*y^2 with x, y integers and x == 1 (mod 3). Then W(p-1) == (-1)^{(p+1)/2}*(x-p/x) (mod p^2), where W(n) is defined as the above. - Zhi-Wei Sun, Aug 23 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - (x^2*y + y^2*z - z^2*x + 3*x*y*z)), 1/(1 - (x^3 + y^3 - z^3 + 3*x*y*z)), 1/(1 + x^3 + y^3 + z^3 - 3*x*y*z). - Gheorghe Coserea, Aug 04 2018

Examples

			G.f. = 1 + 3*x + 9*x^2 + 21*x^3 + 9*x^4 - 297*x^5 - 2421*x^6 - 12933*x^7 - ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

Related to diagonal of rational functions: A268545-A268555.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    a := n -> 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Nov 01 2017
  • Mathematica
    Table[Sum[(-1)^k*3^(n - 3*k)*Binomial[n, 3*k]*Binomial[2*k, k]* Binomial[3*k, k], {k, 0, Floor[n/3]}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/3, 2/3}, {1}, x^3 / (x - 1/3)^3 ] / (1 - 3 x), {x, 0, n}]; (* Michael Somos, Nov 01 2017 *)
  • PARI
    subst(eta(q)^3/eta(q^3), q, serreverse(eta(q^9)^3/eta(q)^3*q)) \\ (generating function) Helena Verrill (verrill(AT)math.lsu.edu), Apr 20 2009 [for (-1)^n*a(n)]
    
  • PARI
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(1/(1 + x^3 + y^3 + z^3 - 3*x*y*z), 25)
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 3; a[2] = 9;
      for (n = 2, N-1, a[n+1] = ((9*n^2+9*n+3)*a[n] - 27*n^2*a[n-1])/(n+1)^2);
      concat(1,a);
    };
    seq(24)
    \\ test: y=subst(Ser(seq(202)), 'x, -'x/27); 0 == x*(x^2+9*x+27)*y'' + (3*x^2+18*x+27)*y' + (x+3)*y
    \\ Gheorghe Coserea, Nov 09 2017
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); (-1)^n * polcoeff( subst(eta(x + A)^3 / eta(x^3 + A), x, serreverse( x * eta(x^9 + A)^3 / eta(x + A)^3)), n))}; /* Michael Somos, Nov 01 2017 */

Formula

G.f.: hypergeom([1/3, 2/3], [1], x^3/(x-1/3)^3) / (1-3*x). - Mark van Hoeij, Oct 25 2011
a(n) = Sum_{k=0..floor(n/3)}(-1)^k*3^(n-3k)*C(n,3k)*C(2k,k)*C(3k,k). - Zhi-Wei Sun, Aug 21 2013
0 = x*(x^2+9*x+27)*y'' + (3*x^2 + 18*x + 27)*y' + (x + 3)*y, where y(x) = A(x/-27). - Gheorghe Coserea, Aug 26 2016
a(n) = 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1). - Peter Luschny, Nov 01 2017
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 9*x)*T(x) + (-1 + 9*x)^2*T'(x) + x*(1 - 9*x + 27*x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(-8 + 9*(1 - 9*x)^3)*(1 - 9*x);
g3 = 8 - 36*(1 - 9*x)^3 + 27*(1 - 9*x)^6;
which determine an elliptic surface with four singular fibers. (End)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000

A093388 (n+1)^2*a(n+1) = (17n^2+17n+6)*a(n) - 72*n^2*a(n-1).

Original entry on oeis.org

1, 6, 42, 312, 2394, 18756, 149136, 1199232, 9729882, 79527084, 654089292, 5408896752, 44941609584, 375002110944, 3141107339328, 26402533581312, 222635989516122, 1882882811380284, 15967419789558804, 135752058036988848, 1156869080242393644
Offset: 0

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville.
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017

Examples

			A(x) = 1 + 6*x + 42*x^2 + 312*x^3 + 2394*x^4 + 18756*x^5 + ... is the g.f.
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.

Crossrefs

This is the seventh sequence in the family beginning A002894, A006077, A081085, A005258, A000172, A002893.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    f:=proc(n) option remember; local m; if n=0 then RETURN(1); fi; if n=1 then RETURN(6); fi; m:=n-1; ((17*m^2+17*m+6)*f(n-1)-72*m^2*f(n-2))/n^2; end;
  • Mathematica
    Table[(-1)^n*Sum[Binomial[n,k]*(-8)^k*Sum[Binomial[n-k,j]^3,{j,0,n-k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    a(n)=(-1)^n*sum(k=0,n,binomial(n,k)*(-8)^k*sum(j=0,n-k,binomial(n-k,j)^3));
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 6; a[2] = 42;
      for (n=3, N, a[n] = ((17*n^2 - 17*n + 6)*a[n-1] - 72*(n-1)^2*a[n-2])/n^2);
      concat(1,a);
    };
    seq(20)  \\ Gheorghe Coserea, Aug 26 2016

Formula

a(n) = (-1)^n * Sum_{k=0..n} binomial(n, k) * (-8)^k * Sum_{j=0..n-k} binomial(n-k, j)^3. - Helena Verrill (verrill(AT)math.lsu.edu), Aug 09 2004
G.f.: hypergeom([1/3, 2/3],[1],x^2*(8*x-1)/(2*x-1/3)^3)/(1-6*x). - Mark van Hoeij, Oct 25 2011
a(n) ~ 3^(2*n+3/2)/(Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f. A(x) satisfies: 0 = x*(x+8)*(x+9)*y'' + (3*x^2 + 34*x + 72)*y' + (x+6)*y, where y(x) = A(-x/72). - Gheorghe Coserea, Aug 26 2016
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=6*(-1 + 12*x)*T(x) + (1 - 34*x + 216*x^2)*T'(x) + x*(-1 + 8*x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 12*(-1 + 6*x)*(-1 + 18*x - 84*x^2 + 24*x^3);
g3 = -8*(1 - 12*x + 24*x^2)*(-1 + 24*x - 192*x^2 + 504*x^3 + 72*x^4);
which determine an elliptic surface with four singular fibers. (End)

A125143 Almkvist-Zudilin numbers: Sum_{k=0..n} (-1)^(n-k) * ((3^(n-3*k) * (3*k)!) / (k!)^3) * binomial(n,3*k) * binomial(n+k,k).

Original entry on oeis.org

1, -3, 9, -3, -279, 2997, -19431, 65853, 292329, -7202523, 69363009, -407637387, 702049401, 17222388453, -261933431751, 2181064727997, -10299472204311, -15361051476987, 900537860383569, -10586290198314843, 74892552149042721, -235054958584593843
Offset: 0

Views

Author

R. K. Guy, Jan 11 2007

Keywords

Comments

Apart from signs, this is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational function 1/(1 - (x + y + z + w - 27*x*y*z*w)). - Gheorghe Coserea, Oct 14 2018
Named after the Swedish mathematician Gert Einar Torsten Almkvist (1934-2018) and the Russian mathematician Wadim Walentinowitsch Zudilin (b. 1970). - Amiram Eldar, Jun 23 2021

References

  • G. Almkvist and W. Zudilin, Differential equations, mirror maps and zeta values. In Mirror Symmetry V, N. Yui, S.-T. Yau, and J. D. Lewis (eds.), AMS/IP Studies in Advanced Mathematics 38 (2007), International Press and Amer. Math. Soc., pp. 481-515. Cited in Chan & Verrill.
  • Helena Verrill, in a talk at the annual meeting of the Amer. Math. Soc., New Orleans, LA, Jan 2007 on "Series for 1/pi".

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*((3^(n-3*k)*(3*k)!)/(k!)^3) *Binomial[n,3*k] *Binomial[n+k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    a(n) = sum(k=0,n, (-1)^(n-k)*((3^(n-3*k)*(3*k)!)/(k!)^3)*binomial(n,3*k)*binomial(n+k,k) );

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * ((3^(n-3*k) * (3*k)!) / (k!)^3) * binomial(n,3*k) * binomial(n+k,k) . - Arkadiusz Wesolowski, Jul 13 2011
Recurrence: n^3*a(n) = -(2*n-1)*(7*n^2 - 7*n + 3)*a(n-1) - 81*(n-1)^3*a(n-2). - Vaclav Kotesovec, Sep 11 2013
Lim sup n->infinity |a(n)|^(1/n) = 9. - Vaclav Kotesovec, Sep 11 2013
G.f. y=A(x) satisfies: 0 = x^2*(81*x^2 + 14*x + 1)*y''' + 3*x*(162*x^2 + 21*x + 1)*y'' + (21*x + 1)*(27*x + 1)*y' + 3*(27*x + 1)*y. - Gheorghe Coserea, Oct 15 2018
G.f.: hypergeom([1/8, 5/8], [1], -256*x^3/((81*x^2 + 14*x + 1)*(-x + 1)^2))^2/((81*x^2 + 14*x + 1)^(1/4)*sqrt(-x + 1)). - Sergey Yurkevich, Aug 31 2020

Extensions

Edited and more terms added by Arkadiusz Wesolowski, Jul 13 2011

A229111 Expansion of the g.f. of A053723 in powers of the g.f. of A121591.

Original entry on oeis.org

1, -5, 35, -275, 2275, -19255, 163925, -1385725, 11483875, -91781375, 688658785, -4581861025, 22550427925, 8852899375, -2431720493125, 47471706909725, -699843878180125, 9141002535744625, -111232778205154375, 1288777160650004375, -14372445132730778975
Offset: 1

Views

Author

Michael Somos, Sep 30 2013

Keywords

Comments

In Verrill (1999) section 2.1, t = (eta(q^5) / eta(q))^6 the g.f. of A121591 and f = eta(q^5)^5 / eta(q) the g.f. of A053723.
Apart from signs, this is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017

Examples

			G.f. = x - 5*x^2 + 35*x^3 - 275*x^4 + 2275*x^5 - 19255*x^6 + 163925*x^7 + ...
		

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    a[n_] := a[n] = Switch[n, 1, 1, 2, -5, _, (1/(n-1)^3) ((1-2(n-1)) (11(n-2) (n-1)+5) a[n-1] - 125 (n-2)^3 a[n-2])];
    a /@ Range[21] (* Jean-François Alcover, Jan 13 2020 *)
  • PARI
    {a(n) = my(m = n-1); if( n<1, 0, if( n<3, [1, -5][n], -( (5*(m - 1))^3*a(n-2) + (2*m - 1)*(11*(m^2 - m) +5)*a(n-1) )/ m^3))};
    
  • PARI
    {a(n) = sum(k=0, n-1, (-1)^k*binomial(n-1, k)^3*binomial(5*k-(n-1), 3*(n-1)))} \\ Seiichi Manyama, Sep 02 2020

Formula

n^3 * a(n+1) = -(2*n - 1)*(11*n*(n - 1) + 5) * a(n) - 125 * (n - 1)^3 * a(n-1).
a(n*p^k) == (p^3 + Kronecker(p, 5)) * a(n*p^(k-1)) - Kronecker(p, 5) * p^3*a(n*p^(-2)) (mod p^k). [Verrill, 1999]
a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n-1,k)^3 * binomial(5*k-(n-1),3*(n-1)). - Seiichi Manyama, Sep 02 2020
Showing 1-10 of 25 results. Next