cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 116 results. Next

A291275 Primes p such that p does not divide any term of the Apéry-like sequence A005258.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 61, 73, 89, 101, 109, 137, 149, 173, 181, 197, 229, 233, 269, 277, 313, 337, 349, 353, 373, 397, 401, 409, 433, 457, 461, 541, 557, 601, 613, 641, 661, 673, 677, 701, 709, 733, 761, 769, 797, 821, 829, 853, 857, 877, 929, 941, 977
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    maxPrime = 977;
    maxPi = PrimePi @ maxPrime;
    okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{# + 1, -#, -#}, {1, 1}, 1], p] == 1&];
    Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)

A362722 a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).

Original entry on oeis.org

1, 6, 72, 1266, 23232, 445506, 8740728, 174366114, 3519799296, 71696570010, 1470795168072, 30344633110710, 628994746308288, 13089254107521234, 273292588355096760, 5722454505166750266, 120119862431845048320, 2526922404360157374738, 53260275108329790626952
Offset: 0

Views

Author

Peter Bala, May 01 2023

Keywords

Comments

It is known that the sequence of Apéry numbers A005258 satisfies the Gauss congruences A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k
>= 1} A005258(k)*x^k/k ) = 1 + 3*x + 14*x^2 + 82*x^3 + 551*x^4 + ... has integer coefficients (see, for example, Beukers, Proposition, p. 143). Therefore, the power series expansion of E(x)/E(-x) also has integer coefficients and so a(n) = [x^n] ( E(x)/E(-x) )^n is an integer.
In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
We conjecture below that {a(n)} satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.

Crossrefs

Programs

  • Maple
    A005258 := proc(n) add(binomial(n, k)^2*binomial(n+k,k), k = 0..n) end proc:
    E(n,x) := series(exp(n*add(2*A005258(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
    seq(coeftayl(E(n,x), x = 0, n), n = 0..20);

Formula

a(n) = [x^n] exp( Sum_{k >= 1} n*( 2*A005258(2*k+1)*x^(2*k+1) )/(2*k+1) ).
Conjectures:
1) the supercongruence a(p^r) == a(p^(r-1)) (mod p^(2*r+1)) holds for all primes p >= 5.
2) for n >= 2, a(n*p) == a(n) (mod p^2) holds for all primes p >= 3.
3) for r >= 2, the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and n >= 1.

A352655 a(n) = (1/2)*(A005258(n) + A005258(n-1)).

Original entry on oeis.org

2, 11, 83, 699, 6252, 58106, 554633, 5399099, 53356322, 533627511, 5388927513, 54859837434, 562267554552, 5796123147756, 60047675871333, 624801952898619, 6526036790730942, 68395815476047901, 718992874207884953, 7578808590187108199
Offset: 1

Views

Author

Peter Bala, Apr 17 2022

Keywords

Comments

The Apéry numbers A005258 satisfy the supercongruences A005258(p) == 3 (mod p^3) and A005258(p-1) == 1 (mod p^3) for primes p >= 5. It easily follows that a(p) == 2 (mod p^3) for primes p >= 3. We conjecture that the stronger supercongruences a(p) == 2 (mod p^5) hold for primes p >= 5. See A212334 for the corresponding conjecture for the Apéry numbers A005259.
Conjecture: for r >= 2, and all primes p >= 5, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ). - Peter Bala, Oct 13 2022

Examples

			Examples of superconguences:
a(5) - 2 = 6252 - 2 = 2*(5^5) == 0 (mod 5^5).
a(7) - 2 = 554633 - 2 = 3*(7^5)*11 == 0 (mod 7^5).
a(11) - 2 = 5388927513 - 2 = (11^5)*33461 == 0 (mod 11^5).
		

Crossrefs

Programs

  • Maple
    seq((1/2)*add((2*n^2 - k*n + k^2)/(n*(n + k)) * binomial(n, k)^2 * binomial(n + k, k), k = 0..n), n = 1..20);
  • PARI
    f(n) = sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)); \\ A005258
    a(n) = (f(n) + f(n-1))/2; \\ Michel Marcus, Apr 20 2022

Formula

a(n) = (1/2)*Sum_{k = 0..n} (2*n^2 - k*n + k^2)/(n*(n + k)) * binomial(n,k)^2 * binomial(n + k,k).
a(n) = (1/2)*Sum_{k = 0..n-1} (4*n + k)*(n - k)/(n*(n + k)) * binomial(n,k)^2* binomial(n + k,k) for n >= 1.
a(n) = (1/2)*(A108628(n-1) + 3*A208675(n)) for n >= 1.
a(n) = (1/2)*(2*A103882(n) - A352654(n)).
a(n) ~ 5^(3/4)*(13 + 5*sqrt(5))/(20*sqrt(22 + 10*sqrt(5))*Pi*n) * ((11 + 5*sqrt(5))/2)^n.
(11*n^2 - 31*n + 22)*n^2*a(n) = (121*n^4 - 462*n^3 + 607*n^2 - 322*n + 64)*a(n-1) + (11*n^2 - 9*n + 2)*(n - 2)^2*a(n-2) with a(1) = 2 and a(2) = 11.
The g.f. A(x) = 2*x + 11*x^2 + 83*x^3 + ... satisfies the differential equation
(x^5 + 13*x^4 + 22*x^3 + 9*x^2 - x)*A''(x) + (x^4 + 4*x^3 + 26*x^2 + 22*x - 1)*A'(x) + (2*x^2 - 16*x + 4)*A(x) + x^2 - 8*x + 2 = 0, with A(0) = 2 and A'(0) = 11.

A357567 a(n) = 5*A005259(n) - 14*A005258(n).

Original entry on oeis.org

-9, -17, 99, 5167, 147491, 3937483, 105834699, 2907476527, 81702447651, 2342097382483, 68273597307599, 2018243113678027, 60365426282638091, 1823553517258576723, 55557712038989195099, 1705170989220937925167, 52672595030914982754851, 1636296525812843554700323
Offset: 0

Views

Author

Peter Bala, Oct 19 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 5.
2) For r >= 2, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259.
From Peter Bala, Oct 25 2022: (Start)
Additional conjectures:
3) the sequence {u(n): n>= 1} defined by u(n) = (3^42)*A005259(n)^25 - (5^25)* A005258(n)^42 also satisfies the congruences in 1) and 2) above.
4) u(n) == 0 (mod n^5) for integer n of the form 3^i*5^j (see A003593). (End)

Examples

			a(11) - a(1) = 2018243113678027 + 17 = (2^2)*(3^2)*(11^5)*17*20476637 == 0 (mod 11^5).
		

Crossrefs

Programs

  • Maple
    seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 14*binomial(n,k)^2*binomial(n+k,k), k = 0..n), n = 0..20);

Formula

a(n) = 5*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 - 14*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k).
For positive integers n and r, a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for all primes p >= 5.

A357956 a(n) = 5*A005259(n) - 2*A005258(n).

Original entry on oeis.org

3, 19, 327, 6931, 162503, 4072519, 107094207, 2919528211, 81819974343, 2343260407519, 68285241342827, 2018360803903111, 60366625228511423, 1823565812734012639, 55557838850469305327, 1705172303553678726931, 52672608711829111519943, 1636296668756812403477839, 51088496012515356589705107
Offset: 0

Views

Author

Peter Bala, Oct 24 2022

Keywords

Comments

Conjectures:
1) a(p - 1) == 3 (mod p^5) for all primes p >= 5.
2) a(p^r - 1) == a(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357567.

Crossrefs

Programs

  • Maple
    seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n), n = 0..20);
    # Alternatively:
    a := n -> 5*hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1) - 2*hypergeom([1 + n, -n, -n], [1, 1], 1): seq(simplify(a(n)), n = 0..18); # Peter Luschny, Nov 01 2022

Formula

a(n) = 5*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 - 2*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k).
a(n*p^r - 1) == a(n*p^(r-1) - 1) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.
a(n) = 5*hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1) - 2*hypergeom([1 + n, -n, -n], [1, 1], 1). - Peter Luschny, Nov 01 2022

A357959 a(n) = 5*A005259(n-1) + 2*A005258(n).

Original entry on oeis.org

11, 63, 659, 9727, 187511, 4304943, 109312739, 2941124607, 82033399631, 2345394917563, 68306797052879, 2018580243252847, 60368874298729631, 1823588997226603663, 55558079041172790659, 1705174802761490321407, 52672634815976274443711, 1636296942340074307669443
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2, and for all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357959.
There is also a product version of these conjectures:
3) the sequence {u(n): n >= 1} defined by u(n) = A005259(n-1)^5 * A005258(n)^6 also satisfies the congruences in 1) and 2) above. See A357960.

Examples

			Examples of supercongruences:
a(13) - a(1) = 60368874298729631 - 11 = (2^2)*3*5*(13^5)*131*20685869 == 0 (mod 13^5).
a(5^2) - a(5) = 51292638914356604042099497031437511 - 187511 = (2^4)*3*(5^10)* 37*72974432287*40526706713533 == 0 (mod 5^10).
		

Crossrefs

Programs

  • Maple
    seq( add( 5*binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n ), n = 1..20);

Formula

a(n) = 5*Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k).
a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.

A357506 a(n) = A005258(n)^3 * A005258(n-1).

Original entry on oeis.org

27, 20577, 60353937, 287798988897, 1782634331587527, 13011500170881726987, 106321024671550496694837, 943479109706472533832704097, 8916177779855571182824077866307, 88547154924474394601268826256953077, 915376390434997094066775480671975209017
Offset: 1

Views

Author

Peter Bala, Oct 01 2022

Keywords

Comments

The Apéry numbers B(n) = A005258(n) satisfy the supercongruences B(p) == 3 (mod p^3) and B(p-1) == 1 (mod p^3) for all primes p >= 5 (see, for example, Straub, Example 3.4). It follows that a(p) == 27 (mod p^3) for all primes p >= 5. We conjecture that, in fact, the stronger congruence a(p) == 27 (mod p^5) holds for all primes p >= 3 (checked up to p = 251). Compare with the congruence B(p) + B(p-1) == 4 (mod p^5) conjectured to hold for all primes p >= 5. See A352655.
Conjecture: for r >= 2, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for all primes p >= 5. - Peter Bala, Oct 13 2022

Examples

			Example of a supercongruence:
a(7) - a(1) = 106321024671550496694837 - 27 = 2*(3^3)*5*(7^5)* 11*18143* 117398731273 == 0 (mod 7^5)
		

Crossrefs

Programs

  • Maple
    A005258 := n -> add(binomial(n,k)^2*binomial(n+k,k), k = 0..n):
    seq(A005258(n)^3*A005258(n-1), n = 1..20);

A357958 a(n) = 5*A005259(n) + 14*A005258(n-1).

Original entry on oeis.org

39, 407, 7491, 167063, 4112539, 107461667, 2923006251, 81853622423, 2343591359499, 68288538877907, 2018394003648391, 60366962358086243, 1823569260750104179, 55557874330437332267, 1705172670555862322491, 52672612525369663916183
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 3.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357959.
There is also a product version of these conjectures:
3) the sequence {u(n): n>= 1} defined by u(n) = A005259(n)^25 * A005258(n-1)^14 conjecturally satisfies the congruences in 1) and 2) above.

Examples

			Examples of supercongruences:
a(13) - a(1) = 1823569260750104179 - 39 = (2^2)*5*7*(13^5)*35081444357 == 0 (mod 13^5).
a(7^2) - a(7) = (2^3)*(7^9)* 10412078726049425470554760052126170543547100055154203726400782433 == 0 (mod 7^9).
		

Crossrefs

Programs

  • Maple
    seq( add( 5*binomial(n,k)^2*binomial(n+k,k)^2 + 14*binomial(n-1,k)^2* binomial(n+k-1,k), k = 0..n ), n = 1..20);

Formula

a(n) = 5*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 + 14*Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k).
a(p^r) == a(p^(r-1)) ( mod p^(3*r) ) for positive integer r and for all primes p >= 5.

A357957 a(n) = A005259(n)^5 - A005258(n)^2.

Original entry on oeis.org

0, 3116, 2073071232, 6299980938881516, 39141322964380888600000, 368495989505416178203682748116, 4552312485541626792249211584618373944, 68109360474242016374599574592870648425552876, 1174806832391451114413440151405736019461523615095744
Offset: 0

Views

Author

Peter Bala, Oct 24 2022

Keywords

Comments

Conjectures:
1) a(p - 1) == 0 (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r - 1) == a(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259.
3) Put u(n) = A005259(n)^5 / A005258(n)^2. Then u(p^r - 1) == u(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5.

Examples

			a(7) = 4552312485541626792249211584618373944 = (2^3)*(3^3)*(7^5)*29*107* 404116272977592231282158029 == 0 (mod 7^5).
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n)^5 - add(binomial(n,k)^2*binomial(n+k,k), k = 0..n)^2, n = 0..20);
    # Alternatively:
    a := n -> hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2: seq(simplify(a(n)), n=0..8); # Peter Luschny, Nov 01 2022

Formula

a(n) = ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 )^5 - ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k) )^2.
a(n*p^r - 1) == a(n*p^(r-1) - 1) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.
a(n) = hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2. - Peter Luschny, Nov 01 2022

A357960 a(n) = A005259(n-1)^5 * A005258(n)^6.

Original entry on oeis.org

729, 147018378125, 20917910914764786689697, 24148107115850058575342740485778125, 79477722547796770983047586179643766765851375729, 492664048531500749211923278756418311980637289373757041378125, 4671227340507161302417161873394448514470099313382652883508175438056640625
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 3 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 3. These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259.

Crossrefs

Programs

  • Maple
    seq( add(binomial(n-1,k)^2*binomial(n+k-1,k)^2, k = 0..n-1)^5 * add(binomial(n, k)^2*binomial(n+k,k), k = 0..n)^6, n = 1..20);

Formula

a(n) = ( Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k)^2 )^5 * ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k) )^6.
a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.
Showing 1-10 of 116 results. Next