Original entry on oeis.org
-9, -17, 99, 5167, 147491, 3937483, 105834699, 2907476527, 81702447651, 2342097382483, 68273597307599, 2018243113678027, 60365426282638091, 1823553517258576723, 55557712038989195099, 1705170989220937925167, 52672595030914982754851, 1636296525812843554700323
Offset: 0
a(11) - a(1) = 2018243113678027 + 17 = (2^2)*(3^2)*(11^5)*17*20476637 == 0 (mod 11^5).
Cf.
A005258,
A005259,
A212334,
A352655,
A357506,
A357507,
A357508,
A357509,
A357568,
A357569,
A357956,
A357957,
A357958,
A357959,
A357960.
-
seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 14*binomial(n,k)^2*binomial(n+k,k), k = 0..n), n = 0..20);
Original entry on oeis.org
3, 19, 327, 6931, 162503, 4072519, 107094207, 2919528211, 81819974343, 2343260407519, 68285241342827, 2018360803903111, 60366625228511423, 1823565812734012639, 55557838850469305327, 1705172303553678726931, 52672608711829111519943, 1636296668756812403477839, 51088496012515356589705107
Offset: 0
Cf.
A005258,
A005259,
A212334,
A352655,
A357567,
A357568,
A357569,
A357957,
A357958,
A357959,
A357960.
-
seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n), n = 0..20);
# Alternatively:
a := n -> 5*hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1) - 2*hypergeom([1 + n, -n, -n], [1, 1], 1): seq(simplify(a(n)), n = 0..18); # Peter Luschny, Nov 01 2022
Original entry on oeis.org
11, 63, 659, 9727, 187511, 4304943, 109312739, 2941124607, 82033399631, 2345394917563, 68306797052879, 2018580243252847, 60368874298729631, 1823588997226603663, 55558079041172790659, 1705174802761490321407, 52672634815976274443711, 1636296942340074307669443
Offset: 1
Examples of supercongruences:
a(13) - a(1) = 60368874298729631 - 11 = (2^2)*3*5*(13^5)*131*20685869 == 0 (mod 13^5).
a(5^2) - a(5) = 51292638914356604042099497031437511 - 187511 = (2^4)*3*(5^10)* 37*72974432287*40526706713533 == 0 (mod 5^10).
-
seq( add( 5*binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n ), n = 1..20);
Original entry on oeis.org
3125, 161958718203125, 69598400094777710760545478125, 514885225734532980507136994998009584838203125, 15708056924221066705174364772957342407662356116035885781253125, 1125221282019374727979322420623179115437017599670596496532725068048858642578125
Offset: 1
Cf.
A005259,
A212334,
A339946,
A352655,
A357506,
A357508,
A357509,
A357567,
A357568,
A357569,
A357956,
A357957,
A357958,
A357959.
-
A005259 := n -> add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n):
seq(A005259(n)^5 * A005259(n-1)^7, n = 1..10);
Original entry on oeis.org
0, 3116, 2073071232, 6299980938881516, 39141322964380888600000, 368495989505416178203682748116, 4552312485541626792249211584618373944, 68109360474242016374599574592870648425552876, 1174806832391451114413440151405736019461523615095744
Offset: 0
a(7) = 4552312485541626792249211584618373944 = (2^3)*(3^3)*(7^5)*29*107* 404116272977592231282158029 == 0 (mod 7^5).
Cf.
A005258,
A005259,
A212334,
A352655,
A357567,
A357568,
A357569,
A357956,
A357958,
A357959,
A357960.
-
seq(add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n)^5 - add(binomial(n,k)^2*binomial(n+k,k), k = 0..n)^2, n = 0..20);
# Alternatively:
a := n -> hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2: seq(simplify(a(n)), n=0..8); # Peter Luschny, Nov 01 2022
Original entry on oeis.org
729, 147018378125, 20917910914764786689697, 24148107115850058575342740485778125, 79477722547796770983047586179643766765851375729, 492664048531500749211923278756418311980637289373757041378125, 4671227340507161302417161873394448514470099313382652883508175438056640625
Offset: 1
-
seq( add(binomial(n-1,k)^2*binomial(n+k-1,k)^2, k = 0..n-1)^5 * add(binomial(n, k)^2*binomial(n+k,k), k = 0..n)^6, n = 1..20);
Showing 1-6 of 6 results.
Comments