cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A357568 a(n) = 9*binomial(2*n,n)^2 - 8*binomial(3*n,n).

Original entry on oeis.org

1, 12, 204, 2928, 40140, 547512, 7535472, 105077376, 1484848332, 21237645000, 306972655704, 4477160465856, 65802123629424, 973487343836448, 14483651478207360, 216550246159148928, 3251660678391659724, 49011343741651501800, 741221951008966181160, 11243583961952559386400
Offset: 0

Views

Author

Peter Bala, Oct 21 2022

Keywords

Comments

Conjectures:
1) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 3.
These are stronger supercongruences than those satisfied separately by the sequences {binomial(2*n,n)} = A000984 and {binomial(3*n,n)} = A005809.
2) More generally, for k >= 1, the sequence {9*binomial(2*n,n)^k - k*(2^k)*binomial(3*n,n): n >= 0} may satisfy the same supercongruences. This is the case k = 2. See A357509 for the case k = 1.

Examples

			Examples of supercongruences:
a(11) - a(1) = 4477160465856 - 12 = (2^2)*3*(11^5)*101*22937 == 0 (mod 11^5).
a(5^2) - a(5) = 143816772358933669354266172512 - 547512 = (2^3)*3*(5^9)*167191* 194659*94271599039 == 0 (mod 5^9).
		

Crossrefs

Programs

  • Maple
    seq(9*binomial(2*n,n)^2 - 8*binomial(3*n,n), n = 0..20);
  • Mathematica
    A357568[n_] := 9*Binomial[2*n, n]^2 - 8*Binomial[3*n, n];
    Array[A357568, 25, 0] (* Paolo Xausa, Jul 17 2024 *)

Formula

a(n) = 9*A002894(n) - 8*A005809(n) = 9*A000984(n)^2 - 8*A005809(n). .
a(k*p^r) == a(k*p^(r-1)) ( mod p^(3*r) ) for positive integers k and r and for all primes p >= 5 (see Meštrović, Section 6, equation 39).
a(p) == a(1) (mod p^5) for all primes p >= 7 (apply Helou and Terjanian, Section 3, Proposition 2).
From Stefano Spezia, Jul 17 2024: (Start)
G.f.: 16*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x) + 18*EllipticK(16*x)/Pi.
E.g.f.: 9*hypergeom([1/2, 1/2], [1, 1], 16*x) - 8*hypergeom([1/3, 2/3], [1/2, 1], 27*x/4).
a(n) ~ 9*2^(4*n)/(n*Pi). (End)

A357956 a(n) = 5*A005259(n) - 2*A005258(n).

Original entry on oeis.org

3, 19, 327, 6931, 162503, 4072519, 107094207, 2919528211, 81819974343, 2343260407519, 68285241342827, 2018360803903111, 60366625228511423, 1823565812734012639, 55557838850469305327, 1705172303553678726931, 52672608711829111519943, 1636296668756812403477839, 51088496012515356589705107
Offset: 0

Views

Author

Peter Bala, Oct 24 2022

Keywords

Comments

Conjectures:
1) a(p - 1) == 3 (mod p^5) for all primes p >= 5.
2) a(p^r - 1) == a(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357567.

Crossrefs

Programs

  • Maple
    seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n), n = 0..20);
    # Alternatively:
    a := n -> 5*hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1) - 2*hypergeom([1 + n, -n, -n], [1, 1], 1): seq(simplify(a(n)), n = 0..18); # Peter Luschny, Nov 01 2022

Formula

a(n) = 5*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 - 2*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k).
a(n*p^r - 1) == a(n*p^(r-1) - 1) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.
a(n) = 5*hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1) - 2*hypergeom([1 + n, -n, -n], [1, 1], 1). - Peter Luschny, Nov 01 2022

A357959 a(n) = 5*A005259(n-1) + 2*A005258(n).

Original entry on oeis.org

11, 63, 659, 9727, 187511, 4304943, 109312739, 2941124607, 82033399631, 2345394917563, 68306797052879, 2018580243252847, 60368874298729631, 1823588997226603663, 55558079041172790659, 1705174802761490321407, 52672634815976274443711, 1636296942340074307669443
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2, and for all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357959.
There is also a product version of these conjectures:
3) the sequence {u(n): n >= 1} defined by u(n) = A005259(n-1)^5 * A005258(n)^6 also satisfies the congruences in 1) and 2) above. See A357960.

Examples

			Examples of supercongruences:
a(13) - a(1) = 60368874298729631 - 11 = (2^2)*3*5*(13^5)*131*20685869 == 0 (mod 13^5).
a(5^2) - a(5) = 51292638914356604042099497031437511 - 187511 = (2^4)*3*(5^10)* 37*72974432287*40526706713533 == 0 (mod 5^10).
		

Crossrefs

Programs

  • Maple
    seq( add( 5*binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*binomial(n,k)^2* binomial(n+k,k), k = 0..n ), n = 1..20);

Formula

a(n) = 5*Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k).
a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.

A357507 a(n) = A005259(n)^5 * (A005259(n-1))^7.

Original entry on oeis.org

3125, 161958718203125, 69598400094777710760545478125, 514885225734532980507136994998009584838203125, 15708056924221066705174364772957342407662356116035885781253125, 1125221282019374727979322420623179115437017599670596496532725068048858642578125
Offset: 1

Views

Author

Peter Bala, Oct 01 2022

Keywords

Comments

The Apéry numbers A(n) = A005259(n) satisfy the supercongruences A(p) == 5 (mod p^3) and A(p-1) == 1 (mod p^3) for all primes p >= 5 (see, for example, Straub, Introduction). It follows that a(p) == 3125 (mod p^3) for all primes p >= 5. We conjecture that, in fact, the stronger congruence a(p) == 3125 (mod p^5) holds for all primes p >= 3 (checked up to p = 251). Compare with the congruence A(p) + 7*A(p-1) == 12 (mod p^5) conjectured to hold for all primes p >= 5. See A212334.
Conjecture: a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5. - Peter Bala, Oct 26 2022

Crossrefs

Programs

  • Maple
    A005259 := n -> add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n):
    seq(A005259(n)^5 * A005259(n-1)^7, n = 1..10);

A357569 a(n) = binomial(3*n,n)^2 - 27*binomial(2*n,n).

Original entry on oeis.org

-26, -45, 63, 6516, 243135, 9011205, 344597148, 13520945736, 540917244351, 21966327267885, 902702921361813, 37456461969311736, 1566697064604277788, 65973795093057780936, 2794203818388994498200, 118933541228931589568016, 5084343623375039833670079, 218184481964802862563857685
Offset: 0

Views

Author

Peter Bala, Oct 21 2022

Keywords

Comments

Conjectures:
1) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 3.
These are stronger supercongruences than those satisfied separately by the sequences {binomial(2*n,n)} = A000984 and {binomial(3*n,n)} = A005809.
2) More generally, for k >= 1, the sequence {2*binomial(3*n,n)^k - k*(3^(k+1))*binomial(2*n,n): n >= 0} may satisfy the same supercongruences. This is the case k = 2. See A357509 for the case k = 1.

Examples

			Examples of supercongruences:
a(13) - a(1) = 65973795093057780936 + 45 = (3^2)*(13^5)*163*121122434651 == 0 (mod 13^5).
a(5^2) - a(5) = 2765555290416839473031163791322085183080 - 9011205 = (3^2)*(5^9)* 229*2333*6840413*74974087*574203805501 == 0 (mod 5^9).
		

Crossrefs

Programs

  • Maple
    seq(binomial(3*n,n)^2 - 27*binomial(2*n,n), n = 0..20);
  • Mathematica
    Table[Binomial[3n,n]^2-27*Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Jun 12 2023 *)

Formula

a(n) = 3*A188662(n) - 27*A000984(n) = 3*A005809(n)^2 - 27*A000984(n).
a(k*p^r) == a(k*p^(r-1)) ( mod p^(3*r) ) for positive integers k and r and for all primes p >= 5 (see Meštrović, Section 6, equation 39).
a(p) == a(1) (mod p^5) for all primes p >= 7 (apply Helou and Terjanian, Section 3, Proposition 2).

A357958 a(n) = 5*A005259(n) + 14*A005258(n-1).

Original entry on oeis.org

39, 407, 7491, 167063, 4112539, 107461667, 2923006251, 81853622423, 2343591359499, 68288538877907, 2018394003648391, 60366962358086243, 1823569260750104179, 55557874330437332267, 1705172670555862322491, 52672612525369663916183
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 3.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357959.
There is also a product version of these conjectures:
3) the sequence {u(n): n>= 1} defined by u(n) = A005259(n)^25 * A005258(n-1)^14 conjecturally satisfies the congruences in 1) and 2) above.

Examples

			Examples of supercongruences:
a(13) - a(1) = 1823569260750104179 - 39 = (2^2)*5*7*(13^5)*35081444357 == 0 (mod 13^5).
a(7^2) - a(7) = (2^3)*(7^9)* 10412078726049425470554760052126170543547100055154203726400782433 == 0 (mod 7^9).
		

Crossrefs

Programs

  • Maple
    seq( add( 5*binomial(n,k)^2*binomial(n+k,k)^2 + 14*binomial(n-1,k)^2* binomial(n+k-1,k), k = 0..n ), n = 1..20);

Formula

a(n) = 5*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 + 14*Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k).
a(p^r) == a(p^(r-1)) ( mod p^(3*r) ) for positive integer r and for all primes p >= 5.

A357957 a(n) = A005259(n)^5 - A005258(n)^2.

Original entry on oeis.org

0, 3116, 2073071232, 6299980938881516, 39141322964380888600000, 368495989505416178203682748116, 4552312485541626792249211584618373944, 68109360474242016374599574592870648425552876, 1174806832391451114413440151405736019461523615095744
Offset: 0

Views

Author

Peter Bala, Oct 24 2022

Keywords

Comments

Conjectures:
1) a(p - 1) == 0 (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r - 1) == a(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259.
3) Put u(n) = A005259(n)^5 / A005258(n)^2. Then u(p^r - 1) == u(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5.

Examples

			a(7) = 4552312485541626792249211584618373944 = (2^3)*(3^3)*(7^5)*29*107* 404116272977592231282158029 == 0 (mod 7^5).
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n)^5 - add(binomial(n,k)^2*binomial(n+k,k), k = 0..n)^2, n = 0..20);
    # Alternatively:
    a := n -> hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2: seq(simplify(a(n)), n=0..8); # Peter Luschny, Nov 01 2022

Formula

a(n) = ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 )^5 - ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k) )^2.
a(n*p^r - 1) == a(n*p^(r-1) - 1) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.
a(n) = hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2. - Peter Luschny, Nov 01 2022

A357960 a(n) = A005259(n-1)^5 * A005258(n)^6.

Original entry on oeis.org

729, 147018378125, 20917910914764786689697, 24148107115850058575342740485778125, 79477722547796770983047586179643766765851375729, 492664048531500749211923278756418311980637289373757041378125, 4671227340507161302417161873394448514470099313382652883508175438056640625
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 3 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 3. These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259.

Crossrefs

Programs

  • Maple
    seq( add(binomial(n-1,k)^2*binomial(n+k-1,k)^2, k = 0..n-1)^5 * add(binomial(n, k)^2*binomial(n+k,k), k = 0..n)^6, n = 1..20);

Formula

a(n) = ( Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k)^2 )^5 * ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k) )^6.
a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.

A357955 a(n) = 3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n).

Original entry on oeis.org

37, 60, 108, 60, -660, 60, 82404, 1411848, 17540460, 191318820, 1952058108, 19175376324, 184118073828, 1743153802320, 16359157606200, 152693295412560, 1420516291306860, 13190159377278324, 122358232382484420, 1134645084249344400, 10522118980232969340
Offset: 0

Views

Author

Peter Bala, Oct 22 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^7) for all primes p >= 3 except p = 7.
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+5) ) for r >= 2 and all primes p >= 3.
These are stronger supercongruences than those satisfied separately by the sequences {binomial(2*n,n)} = A000984, {binomial(3*n,n)} = A005809 and {binomial(4*n,n)} = A005810.
Conjecture 1) was proved by Aidagulov and Alekseyev; see the remarks following Corollary 2. - Peter Bala, Oct 29 2022

Examples

			Examples of supercongruences:
a(11) - a(1) = 19175376324 - 60 = (2^3)*3*(11^7)*41 == 0 (mod 11^7).
a(5^2) - a(5) = 726506045044361132812560 - 60 = (2^2)*3*(5^11)*41*30241552444123 == 0 (mod 5^11).
		

Crossrefs

Programs

  • Maple
    seq(3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n), n = 0..20);
  • Mathematica
    A357955[n_] := 3*Binomial[4*n, n] - 20*Binomial[3*n, n] + 54*Binomial[2*n, n];
    Array[A357955, 25, 0] (* Paolo Xausa, Jul 17 2024 *)
  • Python
    from math import comb
    def A357955(n): return 54*comb(m:=n<<1,n)+3*comb(m<<1,n)-20*comb(m+n,n) # Chai Wah Wu, Oct 24 2022

Formula

a(n) = 3*A005810(n) - 20*A005809(n) + 54*A000984(n).
a(k*p^r) == a(k*p^(r-1)) ( mod p^(3*r) ) for positive integers k and r and for all primes p >= 5 (see Meštrović, Section 6, equation 39).
a(p) == a(1) (mod p^6) for all primes p >= 7 (apply Helou and Terjanian, Section 3, Proposition 2).
From Stefano Spezia, Jul 17 2024: (Start)
G.f.: 54/sqrt(1-4*x) - 40*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x) + 3*hypergeom([1/4, 1/2, 3/4], [1/3, 2/3], 4^4*x/3^3).
E.g.f.: 54*exp(2*x)*BesselI(0, 2*x) - 20*hypergeom([1/3, 2/3], [1/2, 1], 27*x/4) + 3*hypergeom([1/4, 1/2, 3/4], [1/3, 2/3, 1], 4^4*x/3^3).
a(n) ~ exp(2*n*arctanh(229/283))*sqrt(6/(n*Pi)). (End)
Showing 1-9 of 9 results.