Original entry on oeis.org
-9, -17, 99, 5167, 147491, 3937483, 105834699, 2907476527, 81702447651, 2342097382483, 68273597307599, 2018243113678027, 60365426282638091, 1823553517258576723, 55557712038989195099, 1705170989220937925167, 52672595030914982754851, 1636296525812843554700323
Offset: 0
a(11) - a(1) = 2018243113678027 + 17 = (2^2)*(3^2)*(11^5)*17*20476637 == 0 (mod 11^5).
Cf.
A005258,
A005259,
A212334,
A352655,
A357506,
A357507,
A357508,
A357509,
A357568,
A357569,
A357956,
A357957,
A357958,
A357959,
A357960.
-
seq(add(5*binomial(n,k)^2*binomial(n+k,k)^2 - 14*binomial(n,k)^2*binomial(n+k,k), k = 0..n), n = 0..20);
A357510
a(n) = Sum_{k = 0..n} k * binomial(n,k)^2 * binomial(n+k,k)^2.
Original entry on oeis.org
0, 4, 108, 3144, 95000, 2935020, 92054340, 2918972560, 93330811440, 3003683380020, 97177865060540, 3157623679795992, 102973952434618824, 3368460743291372092, 110480459392323735540, 3631941224582026770720, 119637879389041977365600, 3947968300820696313987780
Offset: 0
a(11 - 1) = 97177865060540 = (2^2)*5*(11^4)*37*239*37529 == 0 (mod 11^4).
-
seq( add( k*binomial(n,k)^2 * binomial(n+k,k)^2, k = 0..n ), n = 0..20 );
-
a(n) = sum(k = 0, n, k * binomial(n,k)^2 * binomial(n+k,k)^2); \\ Michel Marcus, Oct 04 2022
Original entry on oeis.org
27, 20577, 60353937, 287798988897, 1782634331587527, 13011500170881726987, 106321024671550496694837, 943479109706472533832704097, 8916177779855571182824077866307, 88547154924474394601268826256953077, 915376390434997094066775480671975209017
Offset: 1
Example of a supercongruence:
a(7) - a(1) = 106321024671550496694837 - 27 = 2*(3^3)*5*(7^5)* 11*18143* 117398731273 == 0 (mod 7^5)
-
A005258 := n -> add(binomial(n,k)^2*binomial(n+k,k), k = 0..n):
seq(A005258(n)^3*A005258(n-1), n = 1..20);
A357511
a(n) = numerator of Sum_{k = 1..n} (1/k) * binomial(n,k)^2 * binomial(n+k,k)^2 for n >= 1 with a(0) = 0.
Original entry on oeis.org
0, 4, 54, 2182, 36625, 3591137, 25952409, 4220121443, 206216140401, 47128096330129, 1233722785504429, 364131107601152519, 9971452750252847789, 3611140187389794708497, 102077670374035974509597, 2922063451137950165057717, 169140610796591477659644439
Offset: 0
a(13 - 1) = 9971452750252847789 = (13^4)*37*2477*24197*157433 == 0 (mod 13^4).
-
seq(numer(add( (1/k) * binomial(n,k)^2 * binomial(n+k,k)^2, k = 1..n )), n = 0..20);
-
a(n) = if (n, numerator(sum(k=1, n, binomial(n,k)^2*binomial(n+k,k)^2/k)), 0); \\ Michel Marcus, Oct 04 2022
Original entry on oeis.org
10, 412, 15076, 643900, 30440010, 1541377330, 81983235064, 4524150828092, 256902133600630, 14924997512212912, 883403610976880740, 53105747607145638706, 3234568078911042493578, 199234128948556264779390, 12391648147019445115584576, 777286417688953098495554620
Offset: 1
-
A364114 := n -> coeff(series( 1/(1-x)* LegendreP(n,(1+x)/(1-x))^3, x, 21), x, n):
seq(3*A364114(n) - 11*A364114(n-1), n = 1..20);
Original entry on oeis.org
46, 1870, 95950, 6111054, 445850046, 35606390254, 3031075759870, 270542736416590, 25045919145436366, 2386963634176587870, 232926731552238831054, 23180020599857593886190, 2345286553765877009107710, 240670553547813070050900126, 25001383450621552178261089950
Offset: 1
-
A364115 := n -> coeff(series( 1/(1-x)* LegendreP(n,(1+x)/(1-x))^4, x, 21), x, n):
seq(7*A364115(n) - 17*A364115(n-1), n = 1..20);
Showing 1-6 of 6 results.
Comments