A357512
a(n) = Sum_{k = 0..n} k^5 * binomial(n,k)^2 * binomial(n+k,k)^2.
Original entry on oeis.org
0, 4, 1188, 126144, 10040000, 682492500, 41503541940, 2325305113600, 122429236976640, 6140504039242500, 296222848665342500, 13841644170257145792, 629814531655430506944, 28019919084086921883892, 1222770835880665252492500, 52476371578141941012480000, 2219374467089388085650636800
Offset: 0
-
seq( add( k^5 * binomial(n,k)^2 * binomial(n+k,k)^2, k = 0..n ), n = 0..20 );
-
a(n) = sum(k = 0, n, k^5 * binomial(n,k)^2 * binomial(n+k,k)^2); \\ Michel Marcus, Oct 04 2022
A357511
a(n) = numerator of Sum_{k = 1..n} (1/k) * binomial(n,k)^2 * binomial(n+k,k)^2 for n >= 1 with a(0) = 0.
Original entry on oeis.org
0, 4, 54, 2182, 36625, 3591137, 25952409, 4220121443, 206216140401, 47128096330129, 1233722785504429, 364131107601152519, 9971452750252847789, 3611140187389794708497, 102077670374035974509597, 2922063451137950165057717, 169140610796591477659644439
Offset: 0
a(13 - 1) = 9971452750252847789 = (13^4)*37*2477*24197*157433 == 0 (mod 13^4).
-
seq(numer(add( (1/k) * binomial(n,k)^2 * binomial(n+k,k)^2, k = 1..n )), n = 0..20);
-
a(n) = if (n, numerator(sum(k=1, n, binomial(n,k)^2*binomial(n+k,k)^2/k)), 0); \\ Michel Marcus, Oct 04 2022
A357513
a(n) = numerator of Sum_{k = 1..n} (1/k^3) * binomial(n,k)^2 * binomial(n+k,k)^2 for n >= 1 with a(0) = 0.
Original entry on oeis.org
0, 4, 81, 14651, 956875, 1335793103, 697621869, 3929170277787, 573290332967211, 8235727724024089939, 172296487023049395523, 5032311952710217004416313, 114828404520381550476341513, 5947240175728534283432460589661, 144126887537331651710781931325261
Offset: 0
a(11 - 1) = 172296487023049395523 = (11^4)*(43^2)*6163*1032705769 == 0 (mod 11^4).
-
seq(numer(add( (1/k^3) * binomial(n,k)^2 * binomial(n+k,k)^2, k = 1..n )), n = 0..20);
-
a(n) = if (n, numerator(sum(k=1, n, binomial(n,k)^2*binomial(n+k,k)^2/k^3)), 0); \\ Michel Marcus, Oct 04 2022
A357558
a(n) = Sum_{k = 0..n} (-1)^(n+k)*k*binomial(n,k)*binomial(n+k,k)^2.
Original entry on oeis.org
0, 4, 54, 648, 7500, 85440, 965202, 10849552, 121566744, 1359160020, 15172321890, 169175039616, 1884704860116, 20982512553912, 233474575117770, 2596777575029280, 28872014164369968, 320917108809011868, 3566175414049854306, 39620770883613043240, 440115513924937822020
Offset: 0
Example of a supercongruence:
p = 17: a(17 - 1) = 28872014164369968 = (2^4)*3*(17^4)*107*251*268153 == 0 (mod 16*7^4)
-
seq( add( (-1)^(n+k)*k*binomial(n, k)*binomial(n+k, k)^2, k = 0..n ), n = 0..20 );
A357559
a(n) = Sum_{k = 0..n} (-1)^(n+k)*k^3*binomial(n,k)*binomial(n+k,k)^2.
Original entry on oeis.org
0, 4, 270, 8448, 192000, 3669300, 62952162, 1003770880, 15182515584, 220700443500, 3110529630450, 42769154678976, 576313309494000, 7636526099508852, 99765264496070250, 1287663145631539200, 16446680778536421888, 208154776511034178380, 2613380452317012835386
Offset: 0
-
seq( add( (-1)^(n+k) * k^3 * binomial(n, k) * binomial(n+k,k)^2, k = 0..n ), n = 0..20 );
A357560
a(n) = the numerator of ( Sum_{k = 1..n} (-1)^(n+k)*(1/k)*binomial(n,k)* binomial(n+k,k)^2 ).
Original entry on oeis.org
0, 4, 0, 94, 500, 19262, 50421, 2929583, 25197642, 2007045752, 3634262225, 368738402141, 6908530637021, 852421484283739, 1168833981781025, 56641833705924527, 276827636652242789, 46345946530867053437, 51051733540797155872, 9673584199611903429172
Offset: 0
Example of a supercongruence:
p = 19: a(19 - 1) = 51051733540797155872 = (2^5)*(19^4)*12241823444801 == 0 (mod 19^4).
-
seq( numer(add( (-1)^(n+k) * (1/k) * binomial(n,k) * binomial(n+k,k)^2, k = 1..n )), n = 0..20 );
A357561
a(n) = the numerator of ( Sum_{k = 1..n} (-1)^(n+k)*(1/k^3)*binomial(n,k)* binomial(n+k,k)^2 ).
Original entry on oeis.org
0, 4, -27, 1367, -15625, 3129353, -14749, 308477847, 14343020119, 80826490175689, 618729030402659, 6526775794564145231, 52975460244520902439, 965428117884339747694757, 8161435689582967449592663, 70159702295938799645630801, 4897311439674525483507166097, 212741477113936719632186271679919
Offset: 0
Example of a supercongruence:
p = 17: a(17 - 1) = 212741477113936719632186271679919 = (17^4)*4871421029* 12036670481533 == 0 (mod 17^4).
-
seq( numer(add( (-1)^(n+k) * (1/k^3) * binomial(n,k) * binomial(n+k,k)^2, k = 1..n )), n = 0..20 );
Showing 1-7 of 7 results.
Comments