A362733
a(n) = [x^n] F(x)^n, where F(x) = exp( Sum_{k >= 1} A362732(k)*x^k/k ).
Original entry on oeis.org
1, 6, 234, 10428, 492522, 24033006, 1197423396, 60530725380, 3092592004074, 159295600885794, 8258018380659234, 430335300869496072, 22521831447746893092, 1182951246247357578348, 62325193477833011143260, 3292376206935392483917428, 174323297281680647978503146, 9248680725006429075147528150
Offset: 0
-
E(n,x) := series(exp(n*add((3*k)!/k!^3*x^k/k, k = 1..20)), x, 21):
A362732(n) := coeftayl(E(n,x), x = 0, n):
F(n,x) := series(exp(n*add(A362732(k)*x^k/k, k = 1..20)), x, 21):
seq(coeftayl(F(n,x), x = 0, n), n = 0..20);
# alternative program
G(n,x) := series(exp(n*add((3*k)!/k!^3*x^(2*k)/k, k = 1..40)), x, 41):
seq((1/2)*coeftayl(G(2*n,x), x = 0, 2*n), n = 1..20); # Peter Bala, Oct 27 2024
A362732
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A006480(k)*x^k/k ).
Original entry on oeis.org
1, 6, 162, 5082, 170274, 5920506, 210808494, 7631158674, 279617726754, 10341283241130, 385275082939662, 14439312879759378, 543815325940475694, 20565700004741265900, 780470358196543271622, 29708379800729905316832, 1133811403010621704628514, 43371319655978568356324868
Offset: 0
-
E(n,x) := series(exp(n*add(((3*k)!/k!^3*x^k)/k, k = 1..20)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
-
nmax = 20; Table[SeriesCoefficient[E^(n*Sum[(3*k)!/k!^3*x^k/k, {k, 1, n}]), {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 26 2024 *)
-
from sympy import symbols, factorial, exp, series
x = symbols('x')
nmax = 10
result = []
for n in range(0, nmax + 1):
summation = sum(factorial(3 * k) / (factorial(k)**3 * k) * x**k for k in range(1, n + 1))
exp_series = exp(n * summation)
coefficient = exp_series.series(x, 0, n + 1).coeff(x, n)
result.append(coefficient)
print(result) # Robert C. Lyons, Jan 27 2025
A362723
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x)= exp( Sum_{k >= 1} A005259(k)*x^k/k ).
Original entry on oeis.org
1, 10, 200, 7390, 260800, 10263010, 407520920, 16758685030, 697767370240, 29525605934410, 1261570539980200, 54419751094210270, 2364396136291654720, 103393259758470870770, 4545671563318715532280, 200804420082143353690390, 8907295723280072012247040, 396570344897237949249382010
Offset: 0
- Frits Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
-
A005259 := proc(n) add(binomial(n, k)^2*binomial(n+k,k)^2, k = 0..n) end;
E(n,x) := series(exp(n*add(2*A005259(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362724
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).
Original entry on oeis.org
1, 3, 37, 525, 7925, 123878, 1980199, 32150030, 527984245, 8747075100, 145917510662, 2447835093498, 41253740275559, 697956867712705, 11847510103853090, 201678623730755525, 3441648250114203253, 58859380176953941937, 1008553120517397082420, 17311102730697482426850
Offset: 0
- F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
-
A005258 := proc(n) add(binomial(n,k)^2*binomial(n+k,k), k = 0..n) end proc:
E(n,x) := series(exp(n*add(A005258(k)*x^k/k, k = 1..20)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362725
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ).
Original entry on oeis.org
1, 5, 123, 3650, 118059, 4015380, 141175410, 5082313276, 186243853995, 6920379988871, 260030830600748, 9860709859708350, 376821110248674594, 14494688046084958080, 560708803489098556632, 21797478402692370515400, 851057798310071946207915, 33356751162583463626417872
Offset: 0
- F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
-
A005259 := proc(n) add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n) end proc:
E(n,x) := series(exp(n*add((A005259(k)*x^k)/k, k = 1..20)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362730
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} binomial(2*k,k)^2*x^k/k ).
Original entry on oeis.org
1, 4, 68, 1336, 27972, 607004, 13478072, 304083224, 6941422916, 159882680452, 3708781743068, 86526900550864, 2028273983776440, 47733938489878528, 1127187050415921304, 26694934151138897336, 633813403549444601156, 15082008687681962081088, 359592614152718921447108
Offset: 0
-
E(n,x) := series( exp(n*add(binomial(2*k,k)^2*x^k/k, k = 1..20)), x, 21 ):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362726
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A208675(k)*x^k/k ).
Original entry on oeis.org
1, 1, 7, 64, 647, 6901, 76120, 859216, 9863303, 114689746, 1347186307, 15954752903, 190235245976, 2281177393704, 27487043703672, 332588768198389, 4038905184944263, 49204502405466061, 601135759955624038, 7362647062772162397, 90380912127647103747
Offset: 0
-
A208675 := proc(n) add( (-1)^k*binomial(n-1,k)*binomial(2*n-k-1,n-k)^2, k = 0..n-1) end:
E(n,x) := series(exp(n*add(A208675(k)*x^k/k, k = 1..20)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362727
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A208675(k)*x^k/k ).
Original entry on oeis.org
1, 2, 8, 110, 960, 12502, 136952, 1746558, 20951040, 267467294, 3347043208, 43051344074, 550991269824, 7146318966438, 92706899799480, 1211369977374310, 15857138035286016, 208493724775866726, 2747100161210031944, 36305149229744449050, 480750961929272288960
Offset: 0
-
A208675 := proc(n) add( (-1)^k*binomial(n-1,k)*binomial(2*n-k-1,n-k)^2, k = 0..n-1) end:
E(n,x) := series(exp(n*add(2*A208675(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362728
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A108628(k-1)*x^k/k ).
Original entry on oeis.org
1, 1, 9, 91, 985, 11101, 128475, 1515032, 18116825, 218988046, 2669804209, 32776883899, 404733925435, 5022161428571, 62578069656776, 782560813918216, 9817011145746649, 123492956278927438, 1557295053170126994, 19681186581532094418
Offset: 0
-
A108628 := proc(n) add(binomial(n,k)*binomial(n+1,k)*binomial(n+k+1,k), k = 0..n) end:
E(n,x) := series( exp(n*add(A108628(k-1)*x^k/k, k = 1..20)), x, 21 ):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
A362729
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A108628(k-1)*x^k/k ).
Original entry on oeis.org
1, 2, 8, 146, 1344, 18502, 214136, 2820834, 35377152, 465110894, 6038588808, 79936149174, 1056557893440, 14094461001558, 188319357861944, 2529143690991946, 34042038343081984, 459723572413090934, 6221522287903354568, 84397945280561045302, 1147007337762078241344
Offset: 0
-
A108628 := proc(n) add(binomial(n,k)*binomial(n+1,k)*binomial(n+k+1,k) , k = 0..n) end:
E(n,x) := series(exp(n*add(2*(A108628(2*k)*x^(2*k+1))/(2*k+1), k = 0..10)), x, 21):
seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
Showing 1-10 of 11 results.
Comments