A362722 a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).
1, 6, 72, 1266, 23232, 445506, 8740728, 174366114, 3519799296, 71696570010, 1470795168072, 30344633110710, 628994746308288, 13089254107521234, 273292588355096760, 5722454505166750266, 120119862431845048320, 2526922404360157374738, 53260275108329790626952
Offset: 0
Links
- F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Programs
Formula
a(n) = [x^n] exp( Sum_{k >= 1} n*( 2*A005258(2*k+1)*x^(2*k+1) )/(2*k+1) ).
Conjectures:
1) the supercongruence a(p^r) == a(p^(r-1)) (mod p^(2*r+1)) holds for all primes p >= 5.
2) for n >= 2, a(n*p) == a(n) (mod p^2) holds for all primes p >= 3.
3) for r >= 2, the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and n >= 1.
Comments