cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260842 Sum of lcm(gcd(i,j), gcd(k,l)) for i,j,k,l in range [1..n].

Original entry on oeis.org

1, 23, 136, 516, 1289, 3271, 5908, 11084, 18833, 31503, 44072, 71156, 93681, 133095, 190052, 256468, 311909, 421619, 501412, 664112, 847013, 1035763, 1186208, 1515000, 1790625, 2114575, 2502268, 3028600, 3354613, 4109163, 4517824, 5246624, 6070201, 6853807, 7933304
Offset: 1

Views

Author

Sirius Caffrey, Aug 01 2015

Keywords

Programs

  • Maple
    N:= 100: # to get a(1) to a(N)
    M:= Matrix(N,N,igcd,shape=symmetric):
    T:= Vector(N):
    for n from 1 to N do
      T[M[n,n]]:= T[M[n,n]]+1;
      for j from 1 to n-1 do
        T[M[n,j]]:= T[M[n,j]]+2;
      od:
      A[n]:= 2*add(add(ilcm(i,j)*T[i]*T[j],i=1..j-1),j=2..n) + add(i*T[i]^2,i=1..n);
    od:
    seq(A[n],n=1..N); # Robert Israel, Aug 04 2015
  • Mathematica
    f[n_] := Sum[ LCM[ GCD[i, j], GCD[k, l]], {i, n}, {j, n}, {k, n}, {l, n}]; Array[f, 35] (* Robert G. Wilson v, Aug 02 2015 *)
  • PARI
    a(n) = {s = 0; for (i=1, n, for (j=1, n, for (k=1, n, for (l=1, n, s += lcm(gcd(i,j),gcd(k,l)););););); s;} \\ Michel Marcus, Aug 01 2015

Extensions

More terms from Michel Marcus, Aug 01 2015