A260854 Base-4 representation of a(n) is the concatenation of the base-4 representations of 1, 2, ..., n, n-1, ..., 1.
0, 1, 25, 441, 27961, 7148857, 1830131001, 468514084153, 119939614479673, 30704541449950521, 7860362613477971257, 2012252829087011018041, 515136724246861226808633, 131875001407205856562222393, 33760000360244849399916500281, 8642560092222683848298425324857
Offset: 0
Examples
a(0) = 0 is the result of the empty sum corresponding to 0 digits. a(2) = 25 = 16 + 2*4 + 1 = 121_4 is the concatenation of (1, 2, 1). a(4) = 27961 = 12310321_4 is the concatenation of (1, 2, 3, 10, 3, 2, 1), where the middle "10" is the base-4 representation of 4.
Links
- D. Broadhurst, Primes from concatenation: results and heuristics, NmbrThry List, August 1, 2015
Crossrefs
Programs
-
PARI
a(n,b=4)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
Comments