A260853
Base-3 representation of a(n) is the concatenation of the base-3 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 16, 439, 35350, 2864599, 232046890, 18795930559, 1522471570630, 369960528437035, 269701223137448146, 196612191672080116867, 143330287729139571972130, 104487779754548024866115515, 76171591441065652665051372946, 55529090160536864641400481743827
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 16 = 121_3 is the concatenation of (1, 2, 1).
a(3) = 439 = 121021_3 is the concatenation of (1, 2, 10, 2, 1), where the middle "10" is the base-3 representation of 3.
-
Join[{0},Table[FromDigits[Join[Flatten[IntegerDigits[Range[n], 3]], Flatten[ Reverse[ Most[ IntegerDigits[Range[n],3]]]]],3],{n,20}]] (* Harvey P. Dale, Mar 11 2019 *)
-
a(n,b=3)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A260871
Primes whose base-b representation is the concatenation of the base-b representations of (1, 2, ..., k, k-1, ..., 1), for some b > 1 and some k > 1.
Original entry on oeis.org
13, 439, 7069, 27961, 2864599, 522134761, 21107054541321649, 12345678910987654321, 1919434248892467772593071038679, 24197857203266734883076090685781525281, 1457624695486449811479514346937750581569993, 1263023202979901596155544853826881857760357011832664659152364441
Offset: 1
The first two terms are of the form A[b](b) with b=2 and b=3:
a(1) = 13 = 1101_2 = concat(1, 2=10_2, 1).
a(2) = 439 = 121021_3 = concat(1, 2, 3=10_3, 2, 1).
See comments for further examples.
- David Broadhurst, Conjectured list of initial 434 terms (The notation is that [15, [25, 29], 91] means that a(15) is A[25](29) with 91 decimal digits and [237, [895, 1289], 9933] means that a(237) is probably A[895](1289) with 9933 decimal digits.)
The sequences A[b] are listed in
A173427 for b=2,
A260853 for b=3,
A260854 for b=4,
A260855 for b=5,
A260856 for b=6,
A260857 for b=7,
A260858 for b=8,
A260859 for b=9,
A173426 for b=10,
A260861 for b=11,
A260862 for b=12,
A260863 for b=13,
A260864 for b=14,
A260865 for b=15,
A260866 for b=16,
A260860 for b=60.
-
{L=1e99;A260871=List();for(b=2,9e9,for(n=b,9e9,if(Lb)));ispseudoprime(p)&&listput(A260871,p)));vecsort(A260871)}
Showing 1-2 of 2 results.
Comments