A260883 Number of m-shape ordered set partitions, square array read by ascending antidiagonals, A(m, n) for m, n >= 0.
1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 7, 13, 35, 1, 1, 21, 121, 75, 161, 1, 1, 71, 1849, 3907, 541, 913, 1, 1, 253, 35641, 426405, 202741, 4683, 6103, 1, 1, 925, 762763, 65782211, 203374081, 15430207, 47293, 47319, 1, 1, 3433, 17190265, 11872636325, 323213457781, 173959321557
Offset: 1
Examples
[ n ] [0 1 2 3 4 5 6] [ m ] ----------------------------------------------------------- [ 0 ] [1, 1, 3, 9, 35, 161, 913] A101880 [ 1 ] [1, 1, 3, 13, 75, 541, 4683] A000670 [ 2 ] [1, 1, 7, 121, 3907, 202741, 15430207] A094088 [ 3 ] [1, 1, 21, 1849, 426405, 203374081, 173959321557] A243664 [ 4 ] [1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351] A243665 A244174 For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 168 and 1680 respectively. Thus A(3,3) = 1849. Formatted as a triangle: [1] [1, 1] [1, 1, 3] [1, 1, 3, 9] [1, 1, 7, 13, 35] [1, 1, 21, 121, 75, 161] [1, 1, 71, 1849, 3907, 541, 913] [1, 1, 253, 35641, 426405, 202741, 4683, 6103]
Crossrefs
Programs
Formula
From Petros Hadjicostas, Aug 02 2019: (Start)
Conjecture: For n >= 0, let P be the set of all possible lists (a_1, ..., a_n) of nonnegative integers such that a_1*1 + a_2*2 + ... + a_n*n = n. Consider terms of the form multinomial(n*m, m*[1,..., 1, 2,..., 2,..., n,..., n]) * multinomial(a_1 + ... + a_n, [a_1,..., a_n]), where in the list [1,..., 1, 2,..., 2,..., n,..., n] the number 1 occurs a_1 times, 2 occurs a_2 times, ..., and n occurs a_n times. (Here a_n = 0 or 1.) Summing these terms over P we get A(m, n) provided m >= 1. (End)
Comments