A261035 A weighted count of the number of overpartitions of n with restricted odd differences.
1, -1, -1, -1, 2, -1, 4, -5, 7, -8, 10, -15, 18, -22, 26, -37, 46, -53, 66, -84, 104, -122, 148, -183, 224, -263, 312, -379, 454, -531, 626, -750, 887, -1034, 1208, -1428, 1672, -1936, 2250, -2633, 3062, -3529, 4076, -4728, 5460, -6264, 7196, -8290, 9520, -10875, 12431, -14238
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, Overpartitions with restricted odd differences, Electron. J. Combin. 22 (2015), no.3, paper 3.17.
Formula
G.f.: (Product_{n >= 1} (1+q^(3*n))/(1+q^n)^3) * (1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)*(1+q)^2*(1+q^2)^2*...*(1+q^(n-1))^2*(1+q^n)/((1+q^3)*(1+q^6)*...*(1+q^(3*n)))).
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2 * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jun 12 2019
Comments