A260906 Numbers n such that 3*n and n^3 have the same digit sum.
0, 3, 6, 30, 60, 63, 126, 171, 252, 300, 324, 543, 585, 600, 630, 1260, 1281, 1710, 2520, 2925, 3000, 3240, 5430, 5850, 5946, 6000, 6300, 12600, 12606, 12633, 12810, 14631, 16263, 17100, 21618, 22308, 22971, 24663, 25200, 27633, 28845, 28887, 28965, 29241
Offset: 1
Examples
126 is in the sequence because 126^3 = 2000376 and 3*126 = 378 have the same digit sum: 18.
Links
- Robert Israel, Table of n, a(n) for n = 1..320
Programs
-
Magma
[n: n in [0..50000] | &+Intseq(3*n) eq &+Intseq(n^3)];
-
Maple
select(n -> convert(convert(n^3,base,10),`+`)=convert(convert(3*n,base,10),`+`), 3*[$0..10^5]); # Robert Israel, Nov 20 2015
-
Mathematica
Select[Range[0, 50000], Total[IntegerDigits[3 #]] == Total[IntegerDigits[#^3]] &]
-
PARI
for(n=0, 1e5, if(sumdigits(n^3)==sumdigits(3*n), print1(n, ", "))) \\ Altug Alkan, Nov 20 2015
Comments