A260912 Sum over the genera g of the number of immersions of an unoriented circle with n crossings in an unoriented surface of genus g.
1, 3, 12, 86, 894, 14715, 313364, 8139398, 245237925, 8382002270, 319994166042, 13492740284184, 622738642693202, 31225868370080949, 1690360086869176780, 98252177808632109236, 6103194081506193327048, 403488941845715112039425, 28286698447226523233226110, 2096044354918091666701275248
Offset: 1
Keywords
Links
- R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
Programs
-
Magma
/* For all n */ nbofdblecos := function(G, H, K); CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K; resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)}; Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for; resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)}; Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for; ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl; end function; UUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; H := PermutationGroup< 2*n |genH>; beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub
; rho:=Identity(G); for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>; Hcycrho:=sub ; return nbofdblecos(G,Hcycrho,Cbetarev); end function; [UUfull(n) : n in [1..10]]; //
Comments