A260914
Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is not oriented).
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 19, 45, 22, 0, 76, 335, 427, 56, 0, 376, 3101, 7557, 3681, 0, 0, 2194, 29415, 124919, 139438, 17398, 0, 0, 14614, 295859, 1921246, 4098975, 1768704, 0, 0, 0, 106421, 3031458, 29479410, 102054037, 99304511, 11262088, 0, 0, 0
Offset: 1
The transposed triangle starts:
1 2 6 19 76 376 2194 14614 106421
1 5 45 335 3101 29415 295859 3031458
1 22 427 7557 124919 1961246 29479410
0 56 3681 139438 4098975 102054037
0 0 17398 1768704 99394511
0 0 0 11262088
0 0 0
0 0
0
- Robert Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: 10.1142/S0218216516500474
-
/* Example n := 6 */
n:=6;
n; // n: number of crossings
G:=Sym(2*n);
doubleG := Sym(4*n);
genH:={};
for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n)
cardH:=#H;
cardH;
rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;
cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)
Hcycrho:=sub; // The subgroup generated by H and cycrho
cardZp:= Factorial(2*n-1);
beta:=G!Append([2..2*n],1); // A typical circular permutation
Cbeta:=Centralizer(G,beta);
bool, rever := IsConjugate(G,beta,beta^(-1));
cycbeta := PermutationGroup< 2*n |{rever}>;
Cbetarev := sub;
psifct := function(per);
perinv:=per^(-1);
res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ];
resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
res cat:= resbis;
return doubleG!res;
end function;
numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;
supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function;
// result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus
// Case UU
dbl, dblsize := DoubleCosetRepresentatives(G,Hcycrho,Cbetarev); #dblsize;
genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;
quit;
// Robert Coquereaux, Nov 23 2015
A260296
Sum over the genera g of the number of immersions of an oriented circle with n crossing in an oriented surface of genus g.
Original entry on oeis.org
1, 4, 22, 218, 3028, 55540, 1235526, 32434108, 980179566, 33522177088, 1279935820810, 53970628896500, 2490952020480012, 124903451391713412, 6761440164391403896, 393008709559373134184, 24412776311194951680016, 1613955767240361647220648, 113146793787569865523200018, 8384177419658944198600637096
Offset: 1
-
/* For n a prime integer */ [NthPrime(n)-1 +Factorial(2*NthPrime(n)-1) div Factorial(NthPrime(n)): n in [0..10]]; // Vincenzo Librandi, Aug 01 2015
-
/* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
OOfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta);
return nbofdblecos(G, H, Cbeta); end function;
[OOfull(n) : n in [1..10]];
// Robert Coquereaux, Aug 01 2015
A260847
Sum over the genera g of the number of immersions of an unoriented circle with n crossing in an oriented surface of genus g.
Original entry on oeis.org
1, 3, 13, 121, 1538, 28010, 618243, 16223774, 490103223, 16761330464, 639968394245, 26985325092730, 1245476031528966, 62451726249369666, 3380720083302727868, 196504354812897344692, 12206388155663897395208, 806977883622439156487124, 56573396893789449427353609, 4192088709829643732598955348
Offset: 1
-
/* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for;
Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for;
Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
UOfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1));
cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub; return nbofdblecos(G,H,Cbetarev); end function;
[UOfull(n) : n in [1..10]]; //
A260887
Sum over the genera g of the number of immersions of an oriented circle with n crossings in an unoriented surface of genus g.
Original entry on oeis.org
1, 3, 14, 120, 1556, 27974, 618824, 16223180, 490127050, 16761331644, 639969571892, 26985326408240, 1245476099801252, 62451726395242858, 3380720087847928728, 196504354827002278248, 12206388156005725243280, 806977883623811932432386, 56573396893818112613554940, 4192088709829783508863131872
Offset: 1
- R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
-
/* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for;
Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for;
Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
OUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta);
rho:=Identity(G); for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for;
cycrho := PermutationGroup< 2*n |{rho}>; Hcycrho:=sub;
return nbofdblecos(G,Hcycrho,Cbeta); end function;
[OUfull(n) : n in [1..10]]; //
Showing 1-4 of 4 results.
Comments