A054499
Number of pairings on a bracelet; number of chord diagrams that can be turned over and having n chords.
Original entry on oeis.org
1, 1, 2, 5, 17, 79, 554, 5283, 65346, 966156, 16411700, 312700297, 6589356711, 152041845075, 3811786161002, 103171594789775, 2998419746654530, 93127358763431113, 3078376375601255821, 107905191542909828013, 3997887336845307589431
Offset: 0
For n=3, there are 5 bracelets with 3 pairs of beads. They are represented by the words aabbcc, aabcbc, aabccb, abacbc, and abcabc. All of the 6!/(2*2*2) = 90 combinations can be derived from these by some combination of relabeling the pairs, rotation, and reflection. So a(3) = 5. - _Michael B. Porter_, Jul 27 2016
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- W. Y.-C. Chen, D. C. Torney, Equivalence classes of matchings and lattice-square designs, Discr. Appl. Math. 145 (3) (2005) 349-357.
- Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373 [math.GT], 2016-2017. See p. 252.
- A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
- V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
- R. J. Mathar, Chord Diagrams A054499 (2018)
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019)
- R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.
- Index entries for sequences related to bracelets
Cf.
A007769,
A104256,
A279207,
A279208,
A003437 (loopless chord diagrams),
A322176 (marked chords),
A362657,
A362658,
A362659 (three, four, five instances of each color rather than two),
A371305 (Multiset Transf.),
A260847 (directed chords).
-
max = 19;
alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2*k]*q^k*(2*k-1)!!, {k, 0, max}];
alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!;
a[0] = 1;
a[n_] := 1/4*(Abs[HermiteH[n-1, I/2]] + Abs[HermiteH[n, I/2]] + (2*Sum[Block[{q = (2*n)/p}, alpha[p, q]*EulerPhi[q]], {p, Divisors[ 2*n]}])/(2*n));
Table[a[n], {n, 0, max}] (* Jean-François Alcover, Sep 05 2013, after R. J. Mathar; corrected by Andrey Zabolotskiy, Jul 27 2016 *)
A260848
Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is oriented).
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 21, 64, 36, 0, 99, 559, 772, 108, 0, 588, 5656, 14544, 7222, 0, 0, 3829, 56528, 246092, 277114, 34680, 0, 0, 27404, 581511, 3900698, 8180123, 3534038, 0, 0, 0, 206543, 6020787, 58838383, 203964446, 198551464, 22521600, 0, 0, 0
Offset: 1
The transposed triangle starts:
1 2 6 21 99 588 3829 27404 206543
1 6 64 559 5656 56528 581511 6020787
1 36 772 14544 246092 3900698 58838383
0 108 7222 277114 8180123 203964446
0 0 34680 3534038 198551464
0 0 0 22521600
0 0 0
0 0
The sum over all genera g for a fixed number n of crossings is given by sequence
A260847.
-
/* Example n := 6 */
n:=6;
n; // n: number of crossings
G:=Sym(2*n);
doubleG := Sym(4*n);
genH:={};
for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n)
cardH:=#H;
cardH;
rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;
cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)
Hcycrho:=sub; // The subgroup generated by H and cycrho
cardZp:= Factorial(2*n-1);
beta:=G!Append([2..2*n],1); // A typical circular permutation
Cbeta:=Centralizer(G,beta);
bool, rever := IsConjugate(G,beta,beta^(-1));
cycbeta := PermutationGroup< 2*n |{rever}>;
Cbetarev := sub;
psifct := function(per);
perinv:=per^(-1);
res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ];
resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
res cat:= resbis;
return doubleG!res;
end function;
numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;
supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function;
// result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus
// Case UO
dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbetarev); #dblsize;
genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;
quit;
// Robert Coquereaux, Nov 23 2015
A260296
Sum over the genera g of the number of immersions of an oriented circle with n crossing in an oriented surface of genus g.
Original entry on oeis.org
1, 4, 22, 218, 3028, 55540, 1235526, 32434108, 980179566, 33522177088, 1279935820810, 53970628896500, 2490952020480012, 124903451391713412, 6761440164391403896, 393008709559373134184, 24412776311194951680016, 1613955767240361647220648, 113146793787569865523200018, 8384177419658944198600637096
Offset: 1
-
/* For n a prime integer */ [NthPrime(n)-1 +Factorial(2*NthPrime(n)-1) div Factorial(NthPrime(n)): n in [0..10]]; // Vincenzo Librandi, Aug 01 2015
-
/* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
OOfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta);
return nbofdblecos(G, H, Cbeta); end function;
[OOfull(n) : n in [1..10]];
// Robert Coquereaux, Aug 01 2015
A260887
Sum over the genera g of the number of immersions of an oriented circle with n crossings in an unoriented surface of genus g.
Original entry on oeis.org
1, 3, 14, 120, 1556, 27974, 618824, 16223180, 490127050, 16761331644, 639969571892, 26985326408240, 1245476099801252, 62451726395242858, 3380720087847928728, 196504354827002278248, 12206388156005725243280, 806977883623811932432386, 56573396893818112613554940, 4192088709829783508863131872
Offset: 1
- R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
-
/* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for;
Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for;
Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
OUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta);
rho:=Identity(G); for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for;
cycrho := PermutationGroup< 2*n |{rho}>; Hcycrho:=sub;
return nbofdblecos(G,Hcycrho,Cbeta); end function;
[OUfull(n) : n in [1..10]]; //
A260912
Sum over the genera g of the number of immersions of an unoriented circle with n crossings in an unoriented surface of genus g.
Original entry on oeis.org
1, 3, 12, 86, 894, 14715, 313364, 8139398, 245237925, 8382002270, 319994166042, 13492740284184, 622738642693202, 31225868370080949, 1690360086869176780, 98252177808632109236, 6103194081506193327048, 403488941845715112039425, 28286698447226523233226110, 2096044354918091666701275248
Offset: 1
- R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
-
/* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
UUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>;
Cbetarev := sub;
rho:=Identity(G); for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>;
Hcycrho:=sub;
return nbofdblecos(G,Hcycrho,Cbetarev); end function;
[UUfull(n) : n in [1..10]]; //
Showing 1-5 of 5 results.
Comments