cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A008989 Number of immersions of an unoriented circle into the unoriented sphere with n double points.

Original entry on oeis.org

1, 1, 2, 6, 19, 76, 376, 2194, 14614, 106421, 823832, 6657811, 55557329, 475475046, 4155030702, 36959470662, 333860366236
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 76*x^5 + 376*x^6 + 2194*x^7 + ...
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994, p. 18.

Crossrefs

Cf. A008986, A008987, A008988, A264759, A277739. First line of triangle A260914.

Programs

Extensions

a(6)-a(7) from Guy Valette, Feb 09 2004
a(8)-a(9) from Robert Coquereaux and Jean-Bernard Zuber, Jul 21 2015
a(10) from same source added by N. J. A. Sloane, Mar 03 2016
a(11)-a(14) from Brendan McKay, Mar 11 2023
a(15)-a(16) from Brendan McKay, Mar 29 2024

A260285 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g, in the case that the circle is oriented and the surface is oriented.

Original entry on oeis.org

1, 3, 1, 9, 11, 2, 37, 113, 68, 0, 182, 1102, 1528, 216, 0, 1143, 11114, 28947, 14336, 0, 0, 7553, 112846, 491767, 554096, 69264, 0, 0, 54559, 1160532, 7798139, 16354210, 7066668, 0, 0, 0, 412306, 12038974, 117668914, 407921820, 397094352, 45043200, 0, 0, 0
Offset: 1

Views

Author

Robert Coquereaux, Jul 22 2015

Keywords

Comments

When transposed, displayed as an upper right triangle, and read by columns, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc.
Row g=0 is A008986 starting with n = 1.
For g > 0 the immersions are understood up to stable geotopy equivalence (listed curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015

Examples

			The transposed triangle starts:
  1  3   9   37   182    1143      7553      54559            412306
     1  11  113  1102   11114    112846    1160532          12038974
         2   68  1528   28947    491767    7798139         117668914
              0   216   14336    554096   16354210         407921820
                    0      0      69264    7066668         397094352
                           0          0         0           45043200
                                      0         0                  0
                                                0                  0
		

Crossrefs

The sum over all genera g for a fixed number n of crossings is given by sequence A260296. Cf. A008986, A260285, A260848, A260914.

Programs

  • Magma
    /* Example n := 6 */
    n:=6;
    n; // n: number of crossings
    G:=Sym(2*n);
    doubleG := Sym(4*n);
    genH:={};
    for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
    H := PermutationGroup< 2*n |genH>; //  The H=S(n) subgroup of S(2n)
    cardH:=#H;
    cardH;
    rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;
    cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)
    Hcycrho:=sub;  // The subgroup generated by H and cycrho
    cardZp:= Factorial(2*n-1);
    beta:=G!Append([2..2*n],1); // A typical circular permutation
    Cbeta:=Centralizer(G,beta);
    bool, rever := IsConjugate(G,beta,beta^(-1));
    cycbeta := PermutationGroup< 2*n |{rever}>;
    Cbetarev := sub;
    psifct := function(per);
    perinv:=per^(-1);
    res:= [IsOdd(j) select (j+1)^per  else j-1 + 2*n : j in [1..2*n] ];
    resbis := [IsOdd((j-2*n)^perinv) select  (j-2*n)^perinv +1 +2*n   else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
    res cat:= resbis;
    return doubleG!res;
    end function;
    numberofcycles := function(per);   ess :=   CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;
    supernumberofcycles := function(per); return  numberofcycles(psifct(per)) ; end function;
    // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus
    //case OO
    dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbeta); #dblsize;
    genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;
    quit;
    // Robert Coquereaux, Nov 23 2015

A260848 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is oriented).

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 21, 64, 36, 0, 99, 559, 772, 108, 0, 588, 5656, 14544, 7222, 0, 0, 3829, 56528, 246092, 277114, 34680, 0, 0, 27404, 581511, 3900698, 8180123, 3534038, 0, 0, 0, 206543, 6020787, 58838383, 203964446, 198551464, 22521600, 0, 0, 0
Offset: 1

Views

Author

Robert Coquereaux, Aug 01 2015

Keywords

Comments

When transposed, displayed as an upper right triangle, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc.
Row g=0 is A008987 starting with n = 1.
For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015

Examples

			The transposed triangle starts:
1    2   6   21    99     588      3829      27404            206543
     1   6   64   559    5656     56528     581511           6020787
         1   36   772   14544    246092    3900698          58838383
              0   108    7222    277114    8180123         203964446
                    0      0      34680    3534038         198551464
                           0          0         0           22521600
                                      0         0                  0
                                                0                  0
		

Crossrefs

The sum over all genera g for a fixed number n of crossings is given by sequence A260847.

Programs

  • Magma
    /* Example n := 6 */
    n:=6;
    n; // n: number of crossings
    G:=Sym(2*n);
    doubleG := Sym(4*n);
    genH:={};
    for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
    H := PermutationGroup< 2*n |genH>; //  The H=S(n) subgroup of S(2n)
    cardH:=#H;
    cardH;
    rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;
    cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)
    Hcycrho:=sub;  // The subgroup generated by H and cycrho
    cardZp:= Factorial(2*n-1);
    beta:=G!Append([2..2*n],1); // A typical circular permutation
    Cbeta:=Centralizer(G,beta);
    bool, rever := IsConjugate(G,beta,beta^(-1));
    cycbeta := PermutationGroup< 2*n |{rever}>;
    Cbetarev := sub;
    psifct := function(per);
    perinv:=per^(-1);
    res:= [IsOdd(j) select (j+1)^per  else j-1 + 2*n : j in [1..2*n] ];
    resbis := [IsOdd((j-2*n)^perinv) select  (j-2*n)^perinv +1 +2*n   else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
    res cat:= resbis;
    return doubleG!res;
    end function;
    numberofcycles := function(per);   ess :=   CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;
    supernumberofcycles := function(per); return  numberofcycles(psifct(per)) ; end function;
    // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus
    // Case UO
    dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbetarev); #dblsize;
    genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;
    quit;
    // Robert Coquereaux, Nov 23 2015

A260885 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is oriented, the surface is unoriented).

Original entry on oeis.org

1, 2, 1, 6, 6, 2, 21, 62, 37, 0, 97, 559, 788, 112, 0, 579, 5614, 14558, 7223, 0, 0, 3812, 56526, 246331, 277407, 34748, 0, 0, 27328, 580860, 3900740, 8179658, 3534594, 0, 0, 0, 206410, 6020736, 58842028, 203974134, 198559566, 22524176, 0, 0, 0
Offset: 1

Views

Author

Robert Coquereaux, Aug 02 2015

Keywords

Comments

When transposed, displayed as an upper right triangle, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc.
Row g=0 is A008988 starting with n = 1.
For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015

Examples

			The transposed triangle starts:
  1  2  6  21   97   579    3812    27328     206410
     1  6  62  559  5614   56526   580860    6020736
        2  37  788 14558  246331  3900740   58842028
            0  112  7223  277407  8179658  203974134
                 0     0   34748  3534594  198559566
                       0       0        0   22524176
                               0        0          0
                                        0          0
                                                   0
		

Crossrefs

Cf. A008988. The sum over all genera g for a fixed number n of crossings is given by sequence A260887. Cf. A260885, A260848, A260914.

Programs

  • Magma
    /* Example n := 6 */
    n:=6;
    n; // n: number of crossings
    G:=Sym(2*n);
    doubleG := Sym(4*n);
    genH:={};
    for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
    H := PermutationGroup< 2*n |genH>; //  The H=S(n) subgroup of S(2n)
    cardH:=#H;
    cardH;
    rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;
    cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)
    Hcycrho:=sub;  // The subgroup generated by H and cycrho
    cardZp:= Factorial(2*n-1);
    beta:=G!Append([2..2*n],1); // A typical circular permutation
    Cbeta:=Centralizer(G,beta);
    bool, rever := IsConjugate(G,beta,beta^(-1));
    cycbeta := PermutationGroup< 2*n |{rever}>;
    Cbetarev := sub;
    psifct := function(per);
    perinv:=per^(-1);
    res:= [IsOdd(j) select (j+1)^per  else j-1 + 2*n : j in [1..2*n] ];
    resbis := [IsOdd((j-2*n)^perinv) select  (j-2*n)^perinv +1 +2*n   else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
    res cat:= resbis;
    return doubleG!res;
    end function;
    numberofcycles := function(per);   ess :=   CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;
    supernumberofcycles := function(per); return  numberofcycles(psifct(per)) ; end function;
    // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus
    // Case OU
    dbl, dblsize := DoubleCosetRepresentatives(G,Hcycrho,Cbeta); #dblsize;
    genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;
    quit;
    // Robert Coquereaux, Nov 23 2015

A260912 Sum over the genera g of the number of immersions of an unoriented circle with n crossings in an unoriented surface of genus g.

Original entry on oeis.org

1, 3, 12, 86, 894, 14715, 313364, 8139398, 245237925, 8382002270, 319994166042, 13492740284184, 622738642693202, 31225868370080949, 1690360086869176780, 98252177808632109236, 6103194081506193327048, 403488941845715112039425, 28286698447226523233226110, 2096044354918091666701275248
Offset: 1

Views

Author

Robert Coquereaux, Aug 04 2015

Keywords

Comments

a(n) is the sum over the n-th row of triangle A260914.
a(n) is also the number of double cosets of H\G/K where G is the symmetric group S(2n), H is the subgroup generated by the centralizer of the circular permutation β = (1,2,3,...,2n) of G together with the permutation (2, 2n)(3, 2n-1)(4, 2n-2)...(n, n+2) that conjugates β and β-1, K is a subgroup of G generated by the permutation ρ = (1,2)(3,4)...(2n-3,2n-2)(2n-1,2n), using cycle notation, and the subgroup (isomorphic with S(n)) that commutes with ρ and permutes odd resp. even integers among themselves.
For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015

Crossrefs

Programs

  • Magma
    /* For all n */
    nbofdblecos := function(G, H, K);
    CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
    resH := []; for mu in [1..nCG] do  Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH]  | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
    Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G,CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for;
    resK := []; for mu in [1..nCG] do  Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK]  | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
    Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G,CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for;
    ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for;  ndcl:= tot *  oG/(oH * oK); return ndcl;
    end function;
    UUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;
    H := PermutationGroup< 2*n |genH>;
    beta:=G!Append([2..2*n],1); Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>;
    Cbetarev := sub;
    rho:=Identity(G);  for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>;
    Hcycrho:=sub;
    return nbofdblecos(G,Hcycrho,Cbetarev); end function;
    [UUfull(n) : n in [1..10]]; //

A264755 Triangle T(n,g) read by rows: Partition of the set of (2n-1)! circular permutations on 2n elements according to the minimal genus g of the surface in which one can immerse the non-simple closed curves with n crossings determined by those permutations.

Original entry on oeis.org

1, 4, 2, 42, 66, 12, 780, 2652, 1608, 21552, 132240, 183168, 25920, 803760, 7984320, 20815440, 10313280
Offset: 1

Views

Author

Robert Coquereaux, Nov 23 2015

Keywords

Comments

Each line of the triangle adds up to an odd factorial (2n-1)!. Example (line n=5): 21552 + 132240 + 183168 + 25920 = 362880 = 9!.
The lengths of the rows of the triangle do not strictly increase with n, the first lengths are (1,2,3,3,4,4,...).

Examples

			Taking n = 5 crossings and genus g=0, one obtains a subset of T(5, 0) = 21552 circular permutations of Sym(10) which correspond, in the OO case (the circle is oriented, the sphere is oriented), to the union 179 orbits of length 120=5!/1 and 3 orbits of length 24=5!/5 with respective centralizers of order 1 and 5 under the action of the symmetric group Sym(5) acting on this subset: 179*120 + 3*24 = 21552. The total number of orbits 179 + 3 = 182 = A008986(5) = A260285(5, 0) is the number of immersed spherical curves (g=0) with 5 crossings, in the OO case. The next entry, T(5, 1) = 132240, gives the number of circular permutations that describe immersed closed curves in a torus (g=1), with n=5 crossings, up to stable geotopy; the number of such closed curves in the OO case is 1102 = A260285(5, 1).
Triangle begins:
  1
  4 2
  42 66 12
  780 2652 1608
  21552 132240 183168 25920
  803760 7984320 20815440 10313280
  ...
		

Crossrefs

Programs

  • Magma
    /* Example: line n=5 of the triangle */
    n:=5;
    G:=Sym(2*n);
    CG := Classes(G);
    pos:= [j: j in [1..#CG]  | CycleStructure(CG[j][3]) eq [<2*n,1>]][1];
    circularpermutations:=Class(G,CG[pos][3]); //circularpermutations
    doubleG := Sym(4*n);
    psifct := function(per);
    perinv:=per^(-1);
    res:= [IsOdd(j) select (j+1)^per  else j-1 + 2*n : j in [1..2*n] ];
    resbis := [IsOdd((j-2*n)^perinv) select  (j-2*n)^perinv +1 +2*n   else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
    res cat:= resbis;
    return doubleG!res;
    end function;
    numberofcycles := function(per);   ess :=   CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;
    supernumberofcycles := function(per); return  numberofcycles(psifct(per)) ; end function;
    {* supernumberofcycles(x) : x in circularpermutations  *};
    quit;
Showing 1-6 of 6 results.