cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260943 Expansion of psi(-x^2) * chi(x^3) * f(x^6) in powers of x where psi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, -1, 1, 0, -1, 0, 0, -1, 1, 0, -2, 0, 0, 0, 0, 0, -1, 3, 0, -1, 2, 0, 0, 0, 0, -1, 2, 0, 0, 1, 0, -2, 0, 0, -1, 2, 0, -1, 0, 0, -1, 0, 0, 0, 1, 0, -1, 2, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, -1, 0, 0, -1, 3, 0, -1, 0, 0, -1, 0, 0, -1, 2, 0, 0, 2, 0, -1, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

Examples

			G.f. = 1 - x^2 + x^3 - x^5 - x^8 + x^9 - 2*x^11 - x^17 + 3*x^18 - x^20 + ...
G.f. = q^3 - q^19 + q^27 - q^43 - q^67 + q^75 - 2*q^91 - q^139 + 3*q^147 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x] QPochhammer[ -x^6] QPochhammer[ -x^3, x^6] / (2^(1/2) x^(1/4)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x^3 + A) * eta(x^4 + A) * eta(x^24 + A)), n))};

Formula

Expansion of q^(-3/8) * eta(q^2) * eta(q^6) * eta(q^8) * eta(q^12)^2 / (eta(q^3) * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 0, -1, 1, 0, 0, -1, 0, -1, 1, -1, 0, -2, 0, -1, 1, -1, 0, -1, 0, 0, 1, -1, 0, -2, ...].
a(3*n) = A112606(n). a(3*n + 1) = 0. a(3*n + 2) = - A131964(n).