cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335306 a(n) is the smallest composite number whose sum of distinct prime divisors is prime(n).

Original entry on oeis.org

4, 9, 6, 10, 121, 22, 210, 34, 273, 399, 58, 435, 651, 82, 777, 903, 1645, 118, 885, 1281, 142, 1065, 1533, 1659, 1335, 3115, 202, 2037, 214, 2163, 3729, 6213, 2667, 274, 2919, 298, 2235, 4917, 3297, 3423, 5845, 358, 3801, 382, 7059, 394, 6501, 7385, 8229, 454, 4683
Offset: 1

Views

Author

David James Sycamore, May 31 2020

Keywords

Comments

a(n) <= prime(n)^2 for all n, the equality applies to n = 1,2,5 since 2,3,11 are the only primes which cannot be expressed as the sum of distinct smaller primes. For n other than 1,2,5, a(n) is squarefree, and corresponds to the partition (q_1, q_2,....q_k) of n into distinct primes whose product is the least possible value compared with the product of all distinct prime partitions of n. The intersection of this sequence with A261023 corresponds to primes in A133225.
a(n) >= max(4,2*prime(n)-4) with equality if and only if n = 1 or n is in A107770. - Chai Wah Wu, Jun 01 2020

Examples

			a(7) = 10 since (2,5) is the only prime partition of 7 into distinct smaller parts, and 2*5 = 10. a(11) = 11^2 = 121 because the prime partitions of 11 into smaller parts are: (2,2,7), (2,2,2,5), (2,2,2,2,3), (3,3,5), (2,3,3,3), none of which have only distinct primes.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = 4, p = Prime@ n}, While[PrimeQ[k] || p != Total[First /@ FactorInteger[k]], k++]; k]; Array[a, 50] (* Giovanni Resta, May 31 2020 *)
  • PARI
    a(n) = {my(p=prime(n)); forcomposite(k=1, p^2, if (vecsum(factor(k)[, 1]) == p, return(k)););} \\ Michel Marcus, May 31 2020
    
  • Python
    from sympy import prime, primefactors
    def A335306(n):
        p = prime(n)
        for m in range(max(4,2*p-4),p**2+1):
            if sum(primefactors(m)) == p:
                return m # Chai Wah Wu, Jun 01 2020

Extensions

More terms from Michel Marcus, May 31 2020
Showing 1-1 of 1 results.