cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261043 Number of multisets of nonempty words with a total of n letters over binary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

0, 0, 3, 14, 49, 148, 427, 1170, 3150, 8288, 21562, 55368, 140998, 355854, 892014, 2220856, 5497483, 13533264, 33150801, 80825768, 196218139, 474423934, 1142756063, 2742781794, 6561049181, 15645058210, 37194447065, 88174246904, 208463588035, 491585765888
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Column k=2 of A257740.

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^(2^k), {k, 1, 30}] - 2*Product[1/(1 - x^k), {k, 1, 30}] + 1, {x, 0, 30}], x]
    (* Second program: *)
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^# &]*A[n - j, k], {j, 1, n}]/n];
    T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    a[n_] := T[n, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A257740 *)

Formula

a(n) = A034899(n) - 2*A000041(n) + 1.
a(n) ~ c^2 * 2^(n-1) * exp(2*sqrt(n) - 1/2) / (sqrt(Pi) * n^(3/4)), where c = A247003 = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502...

Extensions

New name from Alois P. Heinz, Oct 07 2018