A261043 Number of multisets of nonempty words with a total of n letters over binary alphabet such that all letters occur at least once in the multiset.
0, 0, 3, 14, 49, 148, 427, 1170, 3150, 8288, 21562, 55368, 140998, 355854, 892014, 2220856, 5497483, 13533264, 33150801, 80825768, 196218139, 474423934, 1142756063, 2742781794, 6561049181, 15645058210, 37194447065, 88174246904, 208463588035, 491585765888
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3000
Programs
-
Mathematica
CoefficientList[Series[Product[1/(1-x^k)^(2^k), {k, 1, 30}] - 2*Product[1/(1 - x^k), {k, 1, 30}] + 1, {x, 0, 30}], x] (* Second program: *) A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^# &]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := T[n, 2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A257740 *)
Formula
Extensions
New name from Alois P. Heinz, Oct 07 2018