cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A269837 Irregular triangle read by rows: even terms of A094728(n+1) divided by 4.

Original entry on oeis.org

1, 2, 4, 3, 6, 4, 9, 8, 5, 12, 10, 6, 16, 15, 12, 7, 20, 18, 14, 8, 25, 24, 21, 16, 9, 30, 28, 24, 18, 10, 36, 35, 32, 27, 20, 11, 42, 40, 36, 30, 22, 12, 49, 48, 45, 40, 33, 24, 13, 56, 54, 50, 44, 36, 26, 14, 64, 63, 60, 55, 48, 39, 28, 15
Offset: 0

Views

Author

Paul Curtz, Mar 06 2016

Keywords

Comments

See A264798 and A261046 for the Hydrogen atom and the Janet periodic table.
a(n) odd terms are again A264798.
Decomposition by multiplication i.e. a(n) = b(n)*c(n) by irregular triangle:
1, 1 1,
2, 1 2,
4, 3, 2, 1, 2, 3,
6, 4, = 2, 1, * 3, 4,
9, 8, 5, 3, 2, 1, 3, 4, 5,
12, 10, 6, 3, 2, 1, 4, 5, 6,
16, 15, 12, 7, 4, 3, 2, 1, 4, 5, 6, 7,
etc. etc. etc.
b(n) is duplicated A004736(n) or mirror of A122197(n+1). c(n) = A138099(n+1).
Decomposition by subtraction, a(n) = d(n) - e(n):
1, 1 0,
2, 2, 0,
4, 3, 4, 3, 0, 0,
6, 4, = 6, 5, - 0, 1,
9, 8, 5, 9, 8, 7, 0, 0, 2,
12, 10, 6, 12, 11, 10, 0, 1, 4,
16, 15, 12, 7, 16, 15, 14, 13, 0, 0, 2, 6,
20, 18, 14, 8, 20, 19, 18, 17, 0, 1, 4, 9,
etc. etc. etc.
d(n) is the natural numbers A000027 inverted by lines. e(n) will be studied (see A239873).
Sum of a(n) by diagonals: 1, 5, 13, 27, 48, ... . The third differences have the period 2: repeat 2, 1. See A002717.

Crossrefs

Programs

A264798 Irregular triangle read by rows: odd-valued terms of A094728(n+1).

Original entry on oeis.org

1, 3, 9, 5, 15, 7, 25, 21, 9, 35, 27, 11, 49, 45, 33, 13, 63, 55, 39, 15, 81, 77, 65, 45, 17, 99, 91, 75, 51, 19, 121, 117, 105, 85, 57, 21, 143, 135, 119, 95, 63, 23, 169, 165, 153, 133, 105, 69, 25, 195, 187, 171, 147, 115, 75, 27, 225, 221, 209, 189, 161, 125, 81, 29, 255, 247
Offset: 0

Views

Author

Paul Curtz, Nov 25 2015

Keywords

Comments

A094728(n+1) comes from A120070(n+2). a(n) approximates frequencies of the spectral lines of the hydrogen atom.
Row sums: 1, 3, 14, 22, ... = A024598(n+1).
First column: A085046(n+1).
Row sums of A261046(n) = 1, 3, 8, 12, ... = A014255(n). See the formula.

Examples

			Irregular triangle begins:
1,
3,
9,  5,
15, 7,
25, 21,  9,
35, 27, 11,
49, 45, 33, 13,
63, 55, 39, 15,
...
		

Crossrefs

Programs

  • Mathematica
    Table[n^2 - k^2, {n, 14}, {k, 0, n - 1}] /. n_ /; EvenQ@ n -> Nothing // Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=1,20,for(k=0,n-1,s=n^2-k^2;if(s%2,print1(s,", ")))) \\ Derek Orr, Dec 24 2015

Formula

a(n) = A261046(n)*A167268(n+1)/2, where A167268 is Janet's sequence.
Showing 1-2 of 2 results.