A261049 Expansion of Product_{k>=1} (1+x^k)^(p(k)), where p(k) is the partition function.
1, 1, 2, 5, 9, 19, 37, 71, 133, 252, 464, 851, 1547, 2787, 4985, 8862, 15639, 27446, 47909, 83168, 143691, 247109, 423082, 721360, 1225119, 2072762, 3494359, 5870717, 9830702, 16409939, 27309660, 45316753, 74986921, 123748430, 203686778, 334421510, 547735241
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Oct 11 2018: (Start) The a(1) = 1 through a(5) = 19 strict multiset partitions: {{1}} {{2}} {{3}} {{4}} {{5}} {{1,1}} {{1,2}} {{1,3}} {{1,4}} {{1,1,1}} {{2,2}} {{2,3}} {{1},{2}} {{1,1,2}} {{1,1,3}} {{1},{1,1}} {{1},{3}} {{1,2,2}} {{1,1,1,1}} {{1},{4}} {{1},{1,2}} {{2},{3}} {{2},{1,1}} {{1,1,1,2}} {{1},{1,1,1}} {{1},{1,3}} {{1},{2,2}} {{2},{1,2}} {{3},{1,1}} {{1,1,1,1,1}} {{1},{1,1,2}} {{1,1},{1,2}} {{2},{1,1,1}} {{1},{1,1,1,1}} {{1,1},{1,1,1}} {{1},{2},{1,1}} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- R. Kaneiwa, An asymptotic formula for Cayley's double partition function p(2; n), Tokyo J. Math. 2, 137-158 (1979).
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..40); # Alois P. Heinz, Aug 08 2015
-
Mathematica
nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k],{k,1,nmax}],{x,0,nmax}],x]
Comments