A261075 Semiprimes whose prime factors are of equal binary length and which differ from each other in exactly three bit positions.
527, 551, 1591, 2173, 2491, 2623, 3127, 5183, 5963, 6059, 6557, 6767, 6887, 7031, 7373, 7571, 7597, 7739, 7979, 8051, 8249, 8549, 8633, 8881, 9017, 9523, 9701, 10541, 10807, 11303, 11639, 12091, 12317, 12827, 14351, 19519, 20413, 20989, 21823, 22331, 23213, 24047, 24613, 24881, 24883, 25777, 25807, 26549, 26671, 26827, 26989, 27661, 28199, 28459, 28757, 29329
Offset: 1
Examples
291311 = 523 * 557 is included (as term a(334)) because 523 ("1000001011" in binary) and 557 ("1000101101" in binary) differ in exactly three bit-positions.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- N. S. Dattani & N. Bryans, Quantum factorization of 56153 with only 4 qubits, arXiv:1411.6758 [quant-ph], 2014.
Crossrefs
Programs
-
Mathematica
Select[Range@ 30000, And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #, Total@ BitXor[IntegerDigits[#1, 2], IntegerDigits[#2, 2]] == 3 & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* Michael De Vlieger, Oct 08 2016 *)
-
PARI
A000523 = n -> logint(n, 2); A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); isA261075(n) = { my(a,b); if(bigomega(n)!=2, 0, a = A020639(n); b = (n/a); ((A000523(a) == A000523(b)) && (3 == norml2(binary(bitxor(a,b)))))); }; i=0; n=0; while(i < 10000, n++; if(isA261075(n), i++; write("b261075.txt", i, " ", n)));
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define A261075 (MATCHING-POS 1 1 (lambda (n) (and (= 2 (A001222 n)) (= (A000523 (A020639 n)) (A000523 (A006530 n))) (= 3 (A101080bi (A020639 n) (A006530 n)))))))