A261100 a(n) is the greatest m for which A002182(m) <= n; the least monotonic left inverse for highly composite numbers A002182.
1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10080
Programs
-
Maple
with(numtheory): A261100_list := proc(len) local n, k, j, b, A, tn: A := NULL; k := 0; for n from 1 to len do b := true; tn := tau(n); for j from 1 to n-1 while b do b := b and tau(j) < tn od: if b then k := k + 1 fi; A := A,k od: A end: A261100_list(120); # Peter Luschny, Jun 06 2017
-
Mathematica
A002182 = Import["https://oeis.org/A002182/b002182.txt", "Table"]; inter = Interpolation[Reverse /@ A002182, InterpolationOrder -> 0]; A261100 = Rest[inter /@ Range[200]] - 1 (* Jean-François Alcover, Oct 25 2019 *)
-
PARI
v002182 = vector(1000); v002182[1] = 1; \\ For memoization. A002182(n) = { my(d,k); if(v002182[n],v002182[n], k = A002182(n-1); d = numdiv(k); while(numdiv(k) <= d, k=k+1); v002182[n] = k; k); }; A261100(n) = { my(k=1); while(A002182(k)<=n,k=k+1); (k-1); } \\ Antti Karttunen, Jun 06 2017
-
Scheme
(define (A261100 n) (let loop ((k 1)) (if (> (A002182 k) n) (- k 1) (loop (+ 1 k)))))
-
Scheme
;; Requires Antti Karttunen's IntSeq-library. (define A261100 (LEFTINV-LEASTMONO 1 1 A002182))
Formula
Extensions
Description clarified by Antti Karttunen, Jun 06 2017
Comments