A261115 Expansion of f(x, x) * f(x^4, x^8) in powers of x where f(,) is Ramanujan's general theta function.
1, 2, 0, 0, 3, 2, 0, 0, 3, 4, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 4, 2, 0, 0, 1, 6, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 4, 0, 0, 2, 4, 0, 0, 2, 4, 0, 0, 1, 2, 0, 0, 8, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 4, 4, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 3*x^4 + 2*x^5 + 3*x^8 + 4*x^9 + 2*x^12 + 2*x^13 + 2*x^16 + ... G.f. = q + 2*q^7 + 3*q^25 + 2*q^31 + 3*q^49 + 4*q^55 + 2*q^73 + 2*q^79 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^12] / QPochhammer[ x^4, x^8], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^24 + A)), n))};
Formula
Expansion of q^(-1/6) * eta(q^2)^5 * eta(q^8) * eta(q^12)^2 / (eta(q)^2 * eta(q^4)^3 * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -2, ...].
Comments