cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261129 Highest exponent in prime factorization of the swinging factorial (A056040).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4
Offset: 2

Views

Author

Peter Luschny, Oct 31 2015

Keywords

Comments

A263922 is a subsequence.

Crossrefs

Programs

  • Maple
    swing := n -> n!/iquo(n,2)!^2:
    max_exp := n -> max(seq(s[2], s=ifactors(n)[2])):
    seq(max_exp(swing(n)), n=2..88);
  • Mathematica
    a[n_] := Max[FactorInteger[n!/Quotient[n, 2]!^2][[;; , 2]]]; Array[a, 100, 2] (* Amiram Eldar, Jul 29 2023 *)
  • Sage
    swing = lambda n: factorial(n)//factorial(n//2)^2
    max_exp = lambda n: max(e for p, e in n.factor())
    [max_exp(swing(n)) for n in (2..88)]

Formula

a(n) = A051903(A056040(n)) for n>=2.
A000120(floor(n/2)) <= a(n) <= A000523(n), (n>=2).