A261129 Highest exponent in prime factorization of the swinging factorial (A056040).
1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4
Offset: 2
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10000
Programs
-
Maple
swing := n -> n!/iquo(n,2)!^2: max_exp := n -> max(seq(s[2], s=ifactors(n)[2])): seq(max_exp(swing(n)), n=2..88);
-
Mathematica
a[n_] := Max[FactorInteger[n!/Quotient[n, 2]!^2][[;; , 2]]]; Array[a, 100, 2] (* Amiram Eldar, Jul 29 2023 *)
-
Sage
swing = lambda n: factorial(n)//factorial(n//2)^2 max_exp = lambda n: max(e for p, e in n.factor()) [max_exp(swing(n)) for n in (2..88)]
Comments