cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261130 a(n) = Product(p prime | n < p <= 2*n).

Original entry on oeis.org

1, 2, 3, 5, 35, 7, 77, 143, 143, 2431, 46189, 4199, 96577, 7429, 7429, 215441, 6678671, 392863, 392863, 765049, 765049, 31367009, 1348781387, 58642669, 2756205443, 2756205443, 2756205443, 146078888479, 146078888479, 5037203051, 297194980009, 584803025179
Offset: 0

Views

Author

Peter Luschny, Oct 31 2015

Keywords

Comments

Essentially the same as A068111. - R. J. Mathar, Nov 23 2015
a(n) is a divisor of binomial(2*n, n); the quotient binomial(2*n, n) / a(n) is A263931(n). - Robert FERREOL, Sep 03 2022

Examples

			a(0) = 1 because the empty product is 1 by convention.
a(4) = 35 because {p prime | 4 < p <= 8} = {5, 7}.
		

Crossrefs

Cf. A000984 (binomial(2*n,n)), A034386, A263931, A356637.

Programs

  • Maple
    a := n -> convert(select(isprime, {$n+1..2*n}),`*`):
    print(seq(a(n), n=0..31));
  • Mathematica
    Join[{1},Table[Times@@Prime[Range[PrimePi[n]+1,PrimePi[2n]]],{n,40}]] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    A261130(n,P=1)={forprime(p=n+1,2*n,P*=p);P} \\ M. F. Hasler, Nov 25 2015
    
  • Python
    from sympy import primorial
    def A261130(n): return primorial(n<<1,nth=False)//primorial(n,nth=False) if n else 1 # Chai Wah Wu, Sep 07 2022