A261134 Number of partitions of subsets s of {1,...,n}, where all integers belonging to a run of consecutive members of s are required to be in different parts.
1, 2, 4, 9, 23, 66, 209, 722, 2697, 10825, 46429, 211799, 1023304, 5217048, 27974458, 157310519, 925326848, 5680341820, 36315837763, 241348819913, 1664484383610, 11893800649953, 87931422125632, 671699288516773, 5295185052962371, 43029828113547685
Offset: 0
Keywords
Examples
a(3) = 9: {}, 1, 2, 3, 1|2, 2|3, 13, 1|3, 1|2|3. a(4) = 23: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 14, 2|3, 2|4, 24, 3|4, 1|2|3, 1|2|4, 1|24, 14|2, 1|3|4, 13|4, 14|3, 2|3|4, 1|2|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..32
Programs
-
Maple
g:= proc(n, s, t) option remember; `if`(n=0, 1, add( `if`(j in s, 0, g(n-1, `if`(j=0, {}, s union {j}), `if`(j=t, t+1, t))), j=0..t)) end: a:= n-> g(n, {}, 1): seq(a(n), n=0..20);
-
Mathematica
g[n_, s_List, t_] := g[n, s, t] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, g[n-1, If[j == 0, {}, s ~Union~ {j}], If[j == t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, {}, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)