cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261134 Number of partitions of subsets s of {1,...,n}, where all integers belonging to a run of consecutive members of s are required to be in different parts.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 209, 722, 2697, 10825, 46429, 211799, 1023304, 5217048, 27974458, 157310519, 925326848, 5680341820, 36315837763, 241348819913, 1664484383610, 11893800649953, 87931422125632, 671699288516773, 5295185052962371, 43029828113547685
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2015

Keywords

Examples

			a(3) = 9: {}, 1, 2, 3, 1|2, 2|3, 13, 1|3, 1|2|3.
a(4) = 23: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 14, 2|3, 2|4, 24, 3|4, 1|2|3, 1|2|4, 1|24, 14|2, 1|3|4, 13|4, 14|3, 2|3|4, 1|2|3|4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, s, t) option remember; `if`(n=0, 1, add(
          `if`(j in s, 0, g(n-1, `if`(j=0, {}, s union {j}),
          `if`(j=t, t+1, t))), j=0..t))
        end:
    a:= n-> g(n, {}, 1):
    seq(a(n), n=0..20);
  • Mathematica
    g[n_, s_List, t_] := g[n, s, t] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, g[n-1, If[j == 0, {}, s ~Union~ {j}], If[j == t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, {}, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)