A261144 Irregular triangle of numbers that are squarefree and smooth (row n contains squarefree p-smooth numbers, where p is the n-th prime).
1, 2, 1, 2, 3, 6, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42
Offset: 1
Examples
Triangle begins: 1, 2; squarefree and 2-smooth 1, 2, 3, 6; squarefree and 3-smooth 1, 2, 3, 5, 6, 10, 15, 30; 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210; ...
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..2046 (first 10 rows)
- A. Hildebrand and G. Tenenbaum, Integers without large prime factors, Journal de théorie des nombres de Bordeaux (1993) Volume:5, Issue:2, p. 411-484.
- Eric Weisstein's MathWorld, Smooth number.
- Wikipedia, Smooth number
Crossrefs
Cf. A000079 (2-smooth), A003586 (3-smooth), A051037 (5-smooth), A002473 (7-smooth), A018336 (7-smooth & squarefree), A051038 (11-smooth), A087005 (11-smooth & squarefree), A080197 (13-smooth), A087006 (13-smooth & squarefree), A087007 (17-smooth & squarefree), A087008 (19-smooth & squarefree).
Row lengths are A000079.
Rightmost terms (or column k = 2^n) are A002110.
Rows are partial unions of rows of A019565.
Row sums are A054640.
Column k = 2^n-1 is A070826.
A005117 lists squarefree numbers.
A072047 counts prime factors of squarefree numbers.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1], sort(map(x-> [x, x*ithprime(n)][], b(n-1)))) end: T:= n-> b(n)[]: seq(T(n), n=1..7); # Alois P. Heinz, Nov 28 2015
-
Mathematica
primorial[n_] := Times @@ Prime[Range[n]]; row[n_] := Select[ Divisors[ primorial[n]], SquareFreeQ]; Table[row[n], {n, 1, 10}] // Flatten
Formula
T(n-1,k) = A339195(n,k)/prime(n). - Gus Wiseman, Aug 24 2021
Comments