A261154 Expansion of psi(q^6) * f(-q^12) / (psi(-q) * psi(q^9)) in powers of q where psi(), f() are Ramanujan theta functions.
1, 1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 30, 38, 48, 60, 75, 92, 114, 140, 170, 208, 252, 304, 366, 439, 526, 626, 744, 884, 1044, 1232, 1451, 1704, 1998, 2336, 2730, 3182, 3700, 4300, 4986, 5772, 6672, 7700, 8876, 10212, 11736, 13472, 15438, 17673, 20207
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 2^(1/2) q^(1/2) EllipticTheta[ 2, 0, q^3] QPochhammer[ q^12] / (EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, 0, q^(9/2)]), {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^18 + A)^2), n))};
Formula
Expansion of eta(q^2) * eta(q^9) * eta(q^12)^3 / (eta(q) * eta(q^4) * eta(q^6) * eta(q^18)^2) in powers of q.
Euler transform of period 36 sequence [1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, -1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A186115.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Comments