A261156 Expansion of chi(q) * chi(-q^9) / (chi(-q) * chi(q^9)) in powers of q where chi() is a Ramanujan theta function.
1, 2, 2, 4, 6, 8, 12, 16, 22, 28, 36, 48, 60, 76, 96, 120, 150, 184, 228, 280, 340, 416, 504, 608, 732, 878, 1052, 1252, 1488, 1768, 2088, 2464, 2902, 3408, 3996, 4672, 5460, 6364, 7400, 8600, 9972, 11544, 13344, 15400, 17752, 20424, 23472, 26944, 30876, 35346
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 22*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2] QPochhammer[ -q, q] QPochhammer[ q^9, q^18] QPochhammer[ q^9, -q^9], {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3), n))};
Formula
Expansion of eta(q^2)^3 * eta(q^9)^2 * eta(q^36) / (eta(q)^2 * eta(q^4) * eta(q^18)^3) in powers of q.
G.f. A(x) = B(x) / B(x^9) where B(x) is the g.f. of A080054.
Euler transform of period 36 sequence [ 2, -1, 2, 0, 2, -1, 2, 0, 0, -1, 2, 0, 2, -1, 2, 0, 2, 0, 2, 0, 2, -1, 2, 0, 2, -1, 0, 0, 2, -1, 2, 0, 2, -1, 2, 0, ...].
a(n) = (-1)^n * A260215(n). - Michael Somos, Aug 14 2015
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Comments