cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261203 Expansion of f(-x^6)^2 / (phi(-x) * phi(-x^9)) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 38, 60, 92, 140, 208, 304, 439, 626, 884, 1232, 1704, 2336, 3182, 4300, 5772, 7700, 10212, 13472, 17673, 23076, 29988, 38808, 50008, 64184, 82070, 104560, 132760, 167996, 211920, 266512, 334202, 417902, 521152, 648224, 804254, 995432
Offset: 0

Views

Author

Michael Somos, Aug 11 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 14*x^4 + 24*x^5 + 38*x^6 + 60*x^7 + ...
G.f. = q + 2*q^3 + 4*q^5 + 8*q^7 + 14*q^9 + 24*q^11 + 38*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^6]^2 / (EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^9]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^2 * eta(x^18 + A) / (eta(x + A)^2 * eta(x^9 + A)^2), n))};

Formula

Expansion of q^(-1/2) * eta(q^2) * eta(q^6)^2 * eta(q^18) / (eta(q)^2 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 2, 1, 2, 1, 2, -1, 2, 1, 4, 1, 2, -1, 2, 1, 2, 1, 2, 0, ...].
a(n) = A261154(2*n + 1).
Convolution inverse of A261202.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(11/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017