A261203 Expansion of f(-x^6)^2 / (phi(-x) * phi(-x^9)) in powers of x where phi(), f() are Ramanujan theta functions.
1, 2, 4, 8, 14, 24, 38, 60, 92, 140, 208, 304, 439, 626, 884, 1232, 1704, 2336, 3182, 4300, 5772, 7700, 10212, 13472, 17673, 23076, 29988, 38808, 50008, 64184, 82070, 104560, 132760, 167996, 211920, 266512, 334202, 417902, 521152, 648224, 804254, 995432
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 14*x^4 + 24*x^5 + 38*x^6 + 60*x^7 + ... G.f. = q + 2*q^3 + 4*q^5 + 8*q^7 + 14*q^9 + 24*q^11 + 38*q^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^6]^2 / (EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^9]), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^2 * eta(x^18 + A) / (eta(x + A)^2 * eta(x^9 + A)^2), n))};
Formula
Expansion of q^(-1/2) * eta(q^2) * eta(q^6)^2 * eta(q^18) / (eta(q)^2 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 2, 1, 2, 1, 2, -1, 2, 1, 4, 1, 2, -1, 2, 1, 2, 1, 2, 0, ...].
a(n) = A261154(2*n + 1).
Convolution inverse of A261202.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(11/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Comments