cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261205 Numbers k such that floor(k^(1/m)) divides k for all integers m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 64, 72, 80, 120, 210, 240, 288, 324, 420, 528, 552, 576, 600, 624, 900, 1260, 1764, 1848, 1980, 3024, 6480, 8100, 8280, 11880, 14160, 14280, 14400, 14520, 14640, 28560, 43680, 44520, 46872, 50400, 175560, 331200, 346920, 491400, 809100, 3418800, 4772040, 38937600, 203918400, 2000862360
Offset: 1

Views

Author

Yan A. Denenberg and Max Alekseyev, Aug 11 2015

Keywords

Comments

Is this a finite sequence?
There are no other terms below 10^23. - Giovanni Resta, Aug 13 2015

Examples

			From _Michel Marcus_, Aug 13 2015: (Start)
For k=1 to 9, we have the following floored roots:
  k=1: 1, 1, ...
  k=2: 2, 1, 1, ...
  k=3: 3, 1, 1, ...
  k=4: 4, 2, 1, 1, ...
  k=5: 5, 2, 1, 1, ...
  k=6: 6, 2, 1, 1, ...
  k=7: 7, 2, 1, 1, ...
  k=8: 8, 2, 2, 1, 1, ...
  k=9: 9, 3, 2, 1, 1, ...
where one can see that 5, 7 and 9 are not terms. (End)
		

Crossrefs

Subsequence of A006446.

Programs

  • Mathematica
    fQ[n_] := Block[{d, k = 2, lst = {}}, While[d = Floor[n^(1/k)]; d > 1, AppendTo[lst, d]; k++]; Union[ IntegerQ@# & /@ (n/Union[lst])] == {True}]; k = 4; lst = {1, 2, 3}; While[k < 10^6, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Aug 15 2015 *)
  • PARI
    is(n) = my(k,t); k=2; while( (t=sqrtnint(n, k)) > 1, if(n%t, return(0)); k++); 1
    n=1; while(n<10^5,if(is(n),print1(n,", "));n++) /* Able to generate terms < 10^5 */ \\ Derek Orr, Aug 12 2015