A261208 Terms of the Leibniz formula (as Euler product) that generate successively better approximations to Pi.
1, 3, 4, 5, 8, 47, 49, 95, 247, 251, 253, 742, 4268, 4270, 4288, 11445, 30123, 30701, 30703, 62592, 62690, 62992, 3535871, 3535872, 3664203, 3664204, 3664214, 3664220, 3665670, 3665696, 3665842, 3665854, 3665866, 3708907, 3708909, 3708913, 3708929, 3708931, 3708935, 3708957, 3708983, 3708985, 3709017
Offset: 1
Keywords
Examples
Calculating the first 8 terms: c(1)=3, c(2)=3.75, c(3)=3.28125, c(4)=3.0078125, c(5)=3.2584635416, c(6)=3.462117513020833, c(7)=3.289011637369791, c(8)=3.1519694858127165. In the above sequence, terms 1, 3, 4, 5, and 8 provide successively closer approximations of Pi (whereas approximations 2, 6, and 7 do not).
Links
- Steven Lubars, Table of n, a(n) for n = 1..71
- Wikipedia, Euler Product
Programs
-
MUMPS
s Pi=3.141592653589793238,a=3,n=1,d=Pi-a w !,1 f i=6:6:1e10 d s L=i+1**.5\1 f j=i-1:2:i+1 d f k=3:2:L q:'(j#k) i j#k d s a=a*j/(j#4+j-2),n=n+1 i $FN(Pi-a,"-")
Steven Lubars, Aug 14 2015 -
PARI
nearmul(p) = if (p % 4 == 1, p-1, p+1); lista(nn) = {print1(lb = 1, ", "); v = 3; ld = abs(Pi-3); for (n=2, nn, np = prime(n+1); v *= np/nearmul(np); if ((nld=abs(Pi-v)) < ld, print1(n, ", "); ld = nld););} \\ Michel Marcus, Aug 14 2015
Formula
Pi = 4*b(1)*b(2)*b(3)*... where b(n) is the n-th odd prime (A065091) divided by its nearest multiple of 4.
Let c(n) be the n-th term of the expansion such that c(n) = 4*b(1)*...*b(n). The sequence consists of the values n such that c(n) provides a closer approximation of Pi than previous approximations c(1)...c(n-1).