cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A261234 a(n) = number of steps to reach (3^n)-1 when starting from k = (3^(n+1))-1 and repeatedly applying the map that replaces k with k - (sum of digits in base-3 representation of k).

Original entry on oeis.org

1, 2, 5, 12, 29, 74, 196, 530, 1445, 3956, 10862, 29901, 82592, 229233, 639967, 1797288, 5073707, 14381347, 40890492, 116559600, 333043360, 953890490, 2738788806, 7881915828, 22729464587, 65652788211, 189866467219, 549596773550, 1592118137130, 4615680732717, 13392399641613, 38894563977633, 113074467549440, 329080350818600, 958725278344368, 2795854777347489
Offset: 0

Views

Author

Antti Karttunen, Aug 13 2015

Keywords

Crossrefs

First differences of A261232 and A261233.
Sum of A261236 and A261237.
Cf. A261235 (first differences of this sequence).
Cf. also A213709.

Programs

  • Mathematica
    Table[Length@ NestWhileList[# - Total@ IntegerDigits[#, 3] &, 3^(n + 1) - 1, # > 3^n - 1 &] - 1, {n, 0, 16}] (* Michael De Vlieger, Jun 27 2016 *)

Formula

a(n) = A261236(n) + A261237(n).

Extensions

a(23)-a(35) from Hiroaki Yamanouchi, Aug 16 2015

A276623 The infinite trunk of ternary beanstalk: The only infinite sequence such that a(n-1) = a(n) - A053735(a(n)), where A053735(n) = base-3 digit sum of n.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 16, 20, 26, 28, 30, 34, 38, 42, 46, 52, 56, 62, 68, 72, 80, 82, 84, 88, 92, 96, 100, 106, 110, 116, 122, 126, 134, 140, 144, 152, 160, 164, 170, 176, 180, 188, 194, 198, 204, 212, 216, 224, 232, 242, 244, 246, 250, 254, 258, 262, 268, 272, 278, 284, 288, 296, 302, 306, 314, 322, 326, 332, 338, 342, 350, 356, 360
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2016

Keywords

Crossrefs

Cf. A004128, A024023, A053735, A054861, A261231 (left inverse), A261233, A276622, A276624, A276603 (terms divided by 2), A276604 (first differences).
Cf. A179016, A219648, A219666, A255056, A259934, A276573, A276583, A276613 for similar constructions.
Cf. also A263273.

Programs

Formula

a(n) = A276624(A276622(n)).
Other identities. For all n >= 0:
A261231(a(n)) = n.
a(A261233(n)) = A024023(n) = 3^n - 1.

A261233 a(n) = number of steps to reach 0 when starting from k = (3^n)-1 and repeatedly applying the map that replaces k with k - (sum of digits in base-3 representation of k).

Original entry on oeis.org

0, 1, 3, 8, 20, 49, 123, 319, 849, 2294, 6250, 17112, 47013, 129605, 358838, 998805, 2796093, 7869800, 22251147, 63141639, 179701239, 512744599, 1466635089, 4205423895, 12087339723, 34816804310, 100469592521, 290336059740, 839932833290, 2432050970420, 7047731703137, 20440131344750, 59334695322383, 172409162871823, 501489513690423, 1460214792034791
Offset: 0

Views

Author

Antti Karttunen, Aug 13 2015

Keywords

Crossrefs

One less than A261232.
Cf. A261234 (the first differences).
Cf. also A218600.

Formula

a(0) = 0; for n >= 1, a(n) = A261234(n-1) + a(n-1).
a(n) = A261231((3^n)-1).
a(n) = A261232(n)-1.

Extensions

Terms from a(24) onward added from the output of Hiroaki Yamanouchi's program by Antti Karttunen, Aug 16 2015

A261232 a(n) = number of steps to reach 0 when starting from k = 3^n and repeatedly applying the map that replaces k with k - (sum of digits in base-3 representation of k).

Original entry on oeis.org

1, 2, 4, 9, 21, 50, 124, 320, 850, 2295, 6251, 17113, 47014, 129606, 358839, 998806, 2796094, 7869801, 22251148, 63141640, 179701240, 512744600, 1466635090, 4205423896, 12087339724, 34816804311, 100469592522, 290336059741, 839932833291, 2432050970421, 7047731703138, 20440131344751, 59334695322384, 172409162871824, 501489513690424
Offset: 0

Views

Author

Antti Karttunen, Aug 13 2015

Keywords

Crossrefs

One more than A261233.
Cf. also A213710.

Formula

a(0) = 1; for n >= 1, a(n) = A261234(n-1) + a(n-1).
a(n) = A261231(3^n).
a(n) = 1 + A261233(n).

Extensions

Terms from a(24) onward added from the output of Hiroaki Yamanouchi's program by Antti Karttunen, Aug 16 2015

A356384 For any n >= 0, let x_n(1) = n, and for any b > 1, x_n(b) = x_n(b-1) minus the sum of digits of x_n(b-1) in base b; a(n) is the least b such that x_n(b) = 0.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Rémy Sigrist, Aug 05 2022

Keywords

Comments

This sequence is well defined: for any n >= 0: if x_n(b) > 0, then x_n(b+1) < x_n(b), and we must eventually reach 0.
This sequence is weakly increasing; this is related to the fact that for any base b > 1, k -> (k minus the sum of digits of k in base b) is weakly increasing.
Note that some values (like 7) do not appear in this sequence (see also A356386).

Examples

			For n = 42:
- we have:
      b  x(b)
      -  ----
      1    42
      2    39
      3    36
      4    33
      5    28
      6    20
      7    12
      8     7
      9     0
- so a(42) = 9.
		

Crossrefs

Programs

  • PARI
    See Links section.
Showing 1-5 of 5 results.