Original entry on oeis.org
-1, 0, 1, 2, 3, 6, 12, 28, 71, 186, 494, 1317, 3478, 9045, 23265, 59856, 155779, 412413, 1108874, 3009228, 8188150, 22257484, 60462422, 164715758, 452011067, 1253176571
Offset: 0
-
Table[Length@ # - 2 First@ FirstPosition[#, k_ /; k != 2] + 1 &@ Map[First@ IntegerDigits[#, 3] &, #] &@ NestWhileList[# - Total@ IntegerDigits[#, 3] &, 3^(n + 1) - 1, # > 3^n - 1 &], {n, 0, 16}] (* Michael De Vlieger, Jun 27 2016, Version 10 *)
-
(define (A261230 n) (- (A261236 n) (A261237 n)))
Original entry on oeis.org
0, 1, 3, 7, 16, 40, 104, 279, 758, 2071, 5678, 15609, 43035, 119139, 331616, 928572, 2614743, 7396880, 20999683, 59784414, 170615755, 488073987, 1399625614, 4023315793, 11590737827, 33452982391
Offset: 0
For n=2, we start from 3^(2+1) - 1 = 26 ("222" in base-3), and subtract 6 to get 20 ("202" in base-3), from which we subtract 4, to get 16 ("121" in base-3), from which we subtract 4, to get 12 ("110" in base-3), from which we subtract 2 to get 10 ("101" in base-3), from which we subtract 2 to get 8 ("22" in base-3), which is the end point of iteration. Of the numbers encountered, 16, 12 and 10 have base-3 representations beginning with digit "1", thus a(2) = 3.
-
/* Use the C-program given in A261234. */
-
Table[Length@ # - First@ FirstPosition[#, k_ /; k != 2] &@ Map[First@ IntegerDigits[#, 3] &, #] &@ NestWhileList[# - Total@ IntegerDigits[#, 3] &, 3^(n + 1) - 1, # > 3^n - 1 &], {n, 0, 16}] (* Michael De Vlieger, Jun 27 2016, Version 10 *)
-
(define (A261236 n) (- (A261234 n) (A261237 n)))
A261234
a(n) = number of steps to reach (3^n)-1 when starting from k = (3^(n+1))-1 and repeatedly applying the map that replaces k with k - (sum of digits in base-3 representation of k).
Original entry on oeis.org
1, 2, 5, 12, 29, 74, 196, 530, 1445, 3956, 10862, 29901, 82592, 229233, 639967, 1797288, 5073707, 14381347, 40890492, 116559600, 333043360, 953890490, 2738788806, 7881915828, 22729464587, 65652788211, 189866467219, 549596773550, 1592118137130, 4615680732717, 13392399641613, 38894563977633, 113074467549440, 329080350818600, 958725278344368, 2795854777347489
Offset: 0
Cf.
A261235 (first differences of this sequence).
-
Table[Length@ NestWhileList[# - Total@ IntegerDigits[#, 3] &, 3^(n + 1) - 1, # > 3^n - 1 &] - 1, {n, 0, 16}] (* Michael De Vlieger, Jun 27 2016 *)
Showing 1-3 of 3 results.
Comments