A261238 Number of transitive reflexive early confluent binary relations R on 2n labeled elements where max_{x}(|{y:xRy}|)=n.
1, 1, 61, 12075, 4798983, 3151808478, 3085918099231, 4210378306984993, 7631859877504516225, 17735784941946000072572, 51404873131596488549863350, 181773929944698613445522139632, 770224297920086034338727292711511, 3852558194920465350481058381000064850
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A135313.
Programs
-
Maple
t:= proc(k) option remember; `if`(k<0, 0, exp(add(x^m/m!*t(k-m), m=1..k))) end: A:= proc(n, k) option remember; coeff(series(t(k), x, n+1), x, n) *n! end: a:= n-> A(2*n,n) -A(2*n,n-1): seq(a(n), n=0..14);
-
Mathematica
t[k_] := t[k] = If[k < 0, 0, Exp[Sum[x^m/m!*t[k-m], {m, 1, k}]]]; A[n_, k_] := A[n, k] = SeriesCoefficient[t[k], {x, 0, n}]*n!; a[n_] := A[2n, n] - A[2n, n-1]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)
Formula
a(n) = A135313(2n,n).
a(n) ~ c * d^n * n^(2*n), where d = 4.307069427308178... and c = 0.2607079596895... - Vaclav Kotesovec, Nov 20 2021
Comments