cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261239 Coefficients in an asymptotic expansion of A259472 in falling factorials.

Original entry on oeis.org

1, -3, 0, -4, -21, -129, -910, -7242, -64155, -626319, -6685548, -77527104, -971315713, -13084909917, -188723009274, -2902997766470, -47458671376503, -821951603042523, -15037432614035864, -289828080356525052, -5870642802374608509, -124691017072423632777
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 12 2015

Keywords

Examples

			A259472(n)/(-2*n!) ~ 1 - 3/n - 4/(n*(n-1)*(n-2)) - 21/(n*(n-1)*(n-2)*(n-3)) - 129/(n*(n-1)*(n-2)*(n-3)*(n-4)) - ... [coefficients are A261239]
A259472(n)/(-2*n!) ~ 1 - 3/n - 4/n^3 - 33/n^4 - 283/n^5 - 2785/n^6 - ... [coefficients are A261214]
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Assuming[Element[x, Reals], Series[E^(3/x) * x^3 / ExpIntegralEi[1/x]^3, {x, 0, 25}]], x]

Formula

a(n) ~ -3 * n! * (1 - 4/n + 2/n^2 - 2/n^3 - 31/n^4 - 288/n^5 - 2939/n^6 - 33944/n^7 - 438614/n^8 - 6266312/n^9 - 98050303/n^10), coefficients are A261253.
For n>0, a(n) = Sum_{k=1..n} A261214(k) * Stirling1(n-1, k-1).