A261249 Number of classes of proper solutions of the Pell equation x^2 - D(n) y^2 = +4 for D(n) = A079896(n), n >= 1.
2, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Examples
n=1: D(1) = 5 = A000037(3) with the a(1) = 2 proper positive fundamental solutions [x, y] = [3, 1] and [7, 3] for the two classes. [x0(1), y0(1)] = [A033313(3), A033317(3)] = [9, 4], and (7, 3)^T = [[9, 4*5], [4, 9]] (3, -1)^T. All other positive solutions in each of the two classes are obtained by applying positive powers of this matrix M(5) to the fundamental solutions. The improper positive fundamental solution is [2*9, 2*4] = [18, 8]. n=2: D(2) = 8 = A000037(6) has a(2) = 0, hence there are only the improper solutions obtainable from [2*3, 2*1] = [6, 2], the smallest positive one. For this even D one has, with x = 2*X, X^2 - 8/4 y^2 = +1, which has an even positive fundamental solution y0 = 2, and r(2) = D(2)/4 = 2 is A007969(1).
References
- Nagell, T. Introduction to number theory, Chelsea Publishing Company, 1964, page 52.
Extensions
Offset corrected by Robin Visser, Jun 08 2025
Comments